By applying Segment Addition Postulate, segment FH is equal to 24 units.
<h3>What is a point?</h3>
A point can be defined as a zero dimensional geometric object and it is generally represented by a dot.
<h3>What is a line segment?</h3>
A line segment can be defined as the part of a line in a geometric figure such as a triangle, circle, quadrilateral, etc., that is bounded by two (2) distinct points and it typically has a fixed length.
<u>Given the following data:</u>
Since point H lies on line segment FG, we would apply Segment Addition Postulate to determine segment FH as follows:
FG = HG + FH
37 = 13 + FH
FH = 37 - 13
FH = 24 units.
Read more on line segment here: brainly.com/question/17617628
#SPJ1
Complete Question:
Given that line segment FG = 37 and segment HG = 13, find segment FH.
Answer: 0.18 (18 cents) per ounce
Step-by-step explanation:
2.88/16 = 0.18
Your answer should be -11.5
One A
y = e^x
dy/dx = e^x The f(x) = the differentiated function. Any value that e^x can have, the derivative has the same value. x is contained in all the reals.
One B
y = x*e^x
y' = e^x + xe^x Using the multiplication rule.
You want the slope and the value of the of y to be the same. The slope is y' of the tangent line
xe^x = e^x + xe^x
e^x = 0
This happens only when x is very "small" like x = - 4444444
y = e^x * ln(x) Using the multiplication rule again, we need the slope of the line with is y'
y1 = e^x
y1' = e^x
y2 = ln(x)
y2' = 1/x
y' = e^x*ln(x) + e^x/x So at x = 1 the slope of the line =
y' = e^1*ln(1) + e^1/1
y' = e*0+e = e
y = mx + b
y = ex + b
to find b we use y= e^x ln(x)
e^x ln(x) = e*x + b
e^1 ln(1) = e*1 + b
ln(1) = 0
0 = e + b
b = - e
line equation and answer.
y = e*x - e