Hi there!


We can evaluate using the power rule and trig rules:



Therefore:
![\int\limits^{12}_{2} {x-sin(x)} \, dx = [\frac{1}{2}x^{2}+cos(x)]_{2}^{12}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B12%7D_%7B2%7D%20%7Bx-sin%28x%29%7D%20%5C%2C%20dx%20%3D%20%5B%5Cfrac%7B1%7D%7B2%7Dx%5E%7B2%7D%2Bcos%28x%29%5D_%7B2%7D%5E%7B12%7D)
Evaluate:

If you want the answer youse a calculator or do 21 divided by 38
Answer:
Definitely
Step-by-step explanation:
In order to completely surround a circle, you need six circles to do that while here in the question it is mentioned that currently there are only five circles surrounding the circle, hence there is enough room to easily fit one more circle.
I just hope that you are satisfied with the answer, Best of Luck.