Answer:
Hydrogen concentration = 7.94×10^-3 M
Explanation:
from potenz Hydrogen ( pH ) definition
pH = -log[H+]
2.1 = -log[H+]
2.1/-log = -log[H+]/-log
10^-2.1 = [H+]
[H+] = 7.94×10^-3M
Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH.
Exponentiate both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × 10−8 M.
Answer:
58.44 g/mol
Explanation:
In this problem, make sure to remember that volume is measured in mL, L or any other units of volume. Remember that g represents grams, and grams is a measure of mass.
However, independent of what mass or what volume we take, molar mass is known to be an intensive property. That is, molar mass doesn't depend on any external conditions or any measurements.
Molar mass solely depends on the chemical structure of a compound and is a constant number at any given conditions.
In this problem, we are given sodium chloride, NaCl. In order to find its molar mass, we need to refer to the periodic table, find the atomic masses of Na and Cl and then add them up to have the molar mass of NaCl:

<span>a pure substance that can be separated into different elements by chemical means</span>