Answer: b. 14ft
Step-by-step explanation:
In the rectangle, the opposite sides are equal. The diagonal divides the rectangle into two equal right angle triangles. The diagonal represents the hypotenuse of both right angle triangles. The length and width represents the opposite and adjacent sides of the right angle triangles.
To determine the length, L of the rectangle, we would apply Pythagoras theorem which is expressed as
Hypotenuse² = opposite side² + adjacent side²
Therefore,
16² = L² + 7²
256 = L² + 49
L² = 256 - 49 = 207
L = √207
L = 14.38
the closest to the length of this rectangle in feet is
14ft
Answer:

Step-by-step explanation:
The above question is in the form of an exponential decay. The equation for an exponential decay is given by:

where y and x are variables, b < 1, a is the initial value of y (that is the value of y when x = 0).
Let y represent the number of trees left and x represent the number of months. Given that there is currently 2.5 billion trees, therefore a = 2.5 * 10⁹, b = 0.5% = 0.005. The equations becomes:

9514 1404 393
Answer:
4a. ∠V≅∠Y
4b. TU ≅ WX
5. No; no applicable postulate
6. see below
Step-by-step explanation:
<h3>4.</h3>
a. When you use the ASA postulate, you are claiming you have shown two angles and the side between them to be congruent. Here, you're given side TV and angle T are congruent to their counterparts, sides WY and angle W. The angle at the other end of segment TV is angle V. Its counterpart is the other end of segment WY from angle W. In order to use ASA, we must show ...
∠V≅∠Y
__
b. When you use the SAS postulate, you are claiming you have shown two sides and the angle between them are congruent. The angle T is between sides TV and TU. The angle congruent to that, ∠W, is between sides WY and WX. Then the missing congruence that must be shown is ...
TU ≅ WX
__
<h3>5.</h3>
The marked congruences are for two sides and a non-included angle. There is no SSA postulate for proving congruence. (In fact, there are two different possible triangles that have the given dimensions. This can be seen in the fact that the given angle is opposite the shortest of the given sides.)
"No, we cannot prove they are congruent because none of the five postulates or theorems can be used."
__
<h3>6.</h3>
The first statement/reason is always the list of "given" statements.
1. ∠A≅∠D, AC≅DC . . . . given
2. . . . . vertical angles are congruent
3. . . . . ASA postulate
4. . . . . CPCTC
6 can go into 59, nine times. Therefore 9 times 6 equals 54