Answer:
y = -1/2x + 17/2
Explanation:
y = 2x + 1 is in slope intercept form
in the equation y = mx+b, m is the slope, and in the equation m =2
the slope of a perpendicular line is the negative reciprocal of the other slope.
slope of perpendicular= -1/m = -1/2
y = -1/2x + b
now find b by substituting in (1,8) into the partial equation
8 = -1/2 + b
b = 8+ 1/2
b = 17/2
please give thanks :) hope this helps
<em>The x and y intercept of 5x + 5y = -30 are (-6, 0) and (0, -6) respectively.</em>
<h2 /><h2>
Explanation:</h2>
The Standard Form of the equation of a line is given by:
![Ax+By=C \\ \\ A,B,C \ Real \ Constants \ and \ A>0](https://tex.z-dn.net/?f=Ax%2BBy%3DC%20%5C%5C%20%5C%5C%20A%2CB%2CC%20%5C%20Real%20%5C%20Constants%20%5C%20and%20%5C%20A%3E0)
So:
![5x+5y=-30](https://tex.z-dn.net/?f=5x%2B5y%3D-30)
is written in Standard Form. The x and y intercepts are:
![x-intercept: \ (x,0) \\ \\ y-intercept: \ (0,y)](https://tex.z-dn.net/?f=x-intercept%3A%20%5C%20%28x%2C0%29%20%5C%5C%20%5C%5C%20y-intercept%3A%20%5C%20%280%2Cy%29)
So:
FOR X-INTERCEPT:
![Let's \ set: \\ y=0 \\ \\ 5x+5(0)=-30 \\ \\ Isolating \ x: \\ \\ 5x=-30 \\ \\ x=-\frac{30}{5} \\ \\ \boxed{x=-6}](https://tex.z-dn.net/?f=Let%27s%20%5C%20set%3A%20%5C%5C%20y%3D0%20%5C%5C%20%5C%5C%205x%2B5%280%29%3D-30%20%5C%5C%20%5C%5C%20Isolating%20%5C%20x%3A%20%5C%5C%20%5C%5C%205x%3D-30%20%5C%5C%20%5C%5C%20x%3D-%5Cfrac%7B30%7D%7B5%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7Bx%3D-6%7D)
FOR Y-INTERCEPT:
![Let's \ set: \\ x=0 \\ \\ 5(0)+5y=-30 \\ \\ Isolating \ x: \\ \\ 5y=-30 \\ \\ y=-\frac{30}{5} \\ \\ \boxed{y=-6}](https://tex.z-dn.net/?f=Let%27s%20%5C%20set%3A%20%5C%5C%20x%3D0%20%5C%5C%20%5C%5C%205%280%29%2B5y%3D-30%20%5C%5C%20%5C%5C%20Isolating%20%5C%20x%3A%20%5C%5C%20%5C%5C%205y%3D-30%20%5C%5C%20%5C%5C%20y%3D-%5Cfrac%7B30%7D%7B5%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7By%3D-6%7D)
Finally,<em> the x and y intercept of 5x + 5y = -30 are (-6, 0) and (0, -6) respectively.</em>
<h2>Learn more:</h2>
Parallel lines: brainly.com/question/12169569
#LearnWithBrainly
You can download answer here
shorturl.at/ipxUY
<h2>
Answer:</h2>
![b. \ \boxed{32 \sq. \ units}](https://tex.z-dn.net/?f=b.%20%5C%20%5Cboxed%7B32%20%5Csq.%20%5C%20units%7D)
<h2>
Step-by-step explanation:</h2>
A trapezoid is a quadrilateral where at least one pair of opposite sides are parallel. In a trapezoid, the both parallel sides are known as the bases of the trapezoid. So we have two bases, namely,
. Also, the height
of the trapezoid is the length between these two bases that's perpendicular to both sides. So the area of a trapezoid in terms of of
is:
![A=\frac{(b_{1}\text{+}b_{2})h}{2}](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B%28b_%7B1%7D%5Ctext%7B%2B%7Db_%7B2%7D%29h%7D%7B2%7D)
Since:
![b_{1}=6, \ b_{2}=10, \ and \ H=4](https://tex.z-dn.net/?f=b_%7B1%7D%3D6%2C%20%5C%20b_%7B2%7D%3D10%2C%20%5C%20and%20%5C%20H%3D4)
The area is:
![A=\frac{(6\text{+}10)4}{2}=\boxed{32 \sq. \ units}](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B%286%5Ctext%7B%2B%7D10%294%7D%7B2%7D%3D%5Cboxed%7B32%20%5Csq.%20%5C%20units%7D)
The area is 10 just use a area calculator!