Answer:
here i finished!
hope it helps yw!
Step-by-step explanation:
The doubling period of a bacterial population is 15 minutes.
At time t = 90 minutes, the bacterial population was 50000.
Round your answers to at least 1 decimal place.
:
We can use the formula:
A = Ao*2^(t/d); where:
A = amt after t time
Ao = initial amt (t=0)
t = time period in question
d = doubling time of substance
In our problem
d = 15 min
t = 90 min
A = 50000
What was the initial population at time t = 0
Ao * 2^(90/15) = 50000
Ao * 2^6 = 50000
We know 2^6 = 64
64(Ao) = 50000
Ao = 50000/64
Ao = 781.25 is the initial population
:
Find the size of the bacterial population after 4 hours
Change 4 hr to 240 min
A = 781.25 * 2^(240/15
A = 781.25 * 2^16
A= 781.25 * 65536
A = 51,199,218.75 after 4 hrs
Answer: I would say it hundredth place
Step-by-step explanation:
Answer:
B. (4x+5)(16x2−20x+25)
Step-by-step explanation:
64x3+125
=(4x+5)(16x2−20x+25)
A. Total Revenue (R) is equal to price per dive (P) multiplied by number of customers (C). We can write
.
Per price increase is $20. So four price increase is $
. Hence, price per dive is 100+80=$180.
Also per price increase, 2 customers are reduced from 30. For 4 price increases,
customers are reduced. Hence, total customers is
.
So Total Revenue is:

B. Each price increase is 20. So x price increase is 20x. Hence, new price per dive would be equal to the sum of 100 and 20x.
Also per price increase, customers decrease by 2. So per x price increases, the customer decrease is 2x. Hence, new number of customers is the difference of 30 and 2x.
Therefor we can write the quadratic equation for total revenue as the new price times the new number of customers.

C. We are looking for the point (x) at which the equation modeled in part (B) gives a maximum value of revenue (y). That x value is given as
, where a is the coefficient of
and b is the coefficient of x. So we have,

That means, the greatest revenue is achieved after 5 price increases. Each price increase was 20, so 5 price increase would be
. So the price that gives the greatest revenue is
.
ANSWERS:
A. $3960
B. 
C. $200