180° rotation about the origin changes the signs of the coordinates.
(x, y) → (-x, -y)
It is a reflection over the y-axis and a reflection over the x-axis (in either order).
<em>You did not provide the options so hopefully you can figure out the answer based on the information I provided.</em>
Using the normal distribution, it is found that 58.97% of students would be expected to score between 400 and 590.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
The mean and the standard deviation are given, respectively, by:

The proportion of students between 400 and 590 is the <u>p-value of Z when X = 590 subtracted by the p-value of Z when X = 400</u>, hence:
X = 590:


Z = 0.76
Z = 0.76 has a p-value of 0.7764.
X = 400:


Z = -0.89
Z = -0.89 has a p-value of 0.1867.
0.7764 - 0.1867 = 0.5897 = 58.97%.
58.97% of students would be expected to score between 400 and 590.
More can be learned about the normal distribution at brainly.com/question/27643290
#SPJ1
Step-by-step explanation:
(3x+6)= 48(Alternate angles)
3x=48-6
3x=42
x=14
2y+48=5y-9 (Sum of two opposite interior angles= exterior angle)
48+9=5y-2y
57=3y
y=19
Answer:
We conclude that:
h(f(-1)) = -2
∴ option D i.e. -2 is correct.
Step-by-step explanation:
Given
f(x) = 4x² - 1
g(x) = 1/2x + 5
h(x) = 2(x - 4)³
To determine
h(f(-1)) = ?
In order to determine h(f(-1)) first we need to determine f(-1).
substitute x = -1 in the function f(x) = 4x² - 1
f(-1) = 4(-1)² - 1
f(-1) = 4(1) - 1
f(-1) = 4-1
f(-1) = 3
so
h(f(-1)) = h(3)
now substitute h = 3 in the function h(x) = 2(x - 4)³
h(x) = 2(x - 4)³
h(3) = 2(3 - 4)³
h(3) = 2(-1)³
h(3) = 2(-1)
h(3) = -2
Thus,
h(f(-1)) = h(3) = -2
Hence, we conclude that:
h(f(-1)) = -2
∴ option D i.e. -2 is correct.