Answer:
The population of mosquitoes in the area at any time <em>t</em> is:
![P(t)=201977.31-1977.31\times 2^{t}](https://tex.z-dn.net/?f=P%28t%29%3D201977.31-1977.31%5Ctimes%202%5E%7Bt%7D)
Step-by-step explanation:
The rate of growth of mosquitoes can be expressed as:
![\frac{dP}{P}=k\ dt](https://tex.z-dn.net/?f=%5Cfrac%7BdP%7D%7BP%7D%3Dk%5C%20dt)
Integrate the above expression as follows:
![\int {\frac{dP}{P}} \, =\int {k\ dt} \, \\\ln|P|=kt+c\\e^{\ln|P|}=e^{kt+c}\\P=Ce^{kt}](https://tex.z-dn.net/?f=%5Cint%20%7B%5Cfrac%7BdP%7D%7BP%7D%7D%20%5C%2C%20%3D%5Cint%20%7Bk%5C%20dt%7D%20%5C%2C%20%5C%5C%5Cln%7CP%7C%3Dkt%2Bc%5C%5Ce%5E%7B%5Cln%7CP%7C%7D%3De%5E%7Bkt%2Bc%7D%5C%5CP%3DCe%5E%7Bkt%7D)
![\Rightarrow P=P_{0}e^{kt}](https://tex.z-dn.net/?f=%5CRightarrow%20P%3DP_%7B0%7De%5E%7Bkt%7D)
It is provided that the population doubles every day.
Compute the value of <em>k</em> as follows:
![2=1\times e^{k\times1}\\2=e^{k}\\k=\ln (2)](https://tex.z-dn.net/?f=2%3D1%5Ctimes%20e%5E%7Bk%5Ctimes1%7D%5C%5C2%3De%5E%7Bk%7D%5C%5Ck%3D%5Cln%20%282%29)
It is also provided that every day 20,000 mosquitoes are eaten.
The rate of growth per week can be expressed as:
![\frac{dP}{dt}=\ln(2)P-14000\\\frac{dP}{dt}-\ln(2)P=14000](https://tex.z-dn.net/?f=%5Cfrac%7BdP%7D%7Bdt%7D%3D%5Cln%282%29P-14000%5C%5C%5Cfrac%7BdP%7D%7Bdt%7D-%5Cln%282%29P%3D14000)
The integrating factor for this is:
![e^{\int {\ln(2)dP}}=e^{\ln(2)\int {dt}}=e^{\ln(2)t}](https://tex.z-dn.net/?f=e%5E%7B%5Cint%20%7B%5Cln%282%29dP%7D%7D%3De%5E%7B%5Cln%282%29%5Cint%20%7Bdt%7D%7D%3De%5E%7B%5Cln%282%29t%7D)
Then,
![P(t)\ e^{-\ln(2)t}=\int {e^{-\ln(2)t}}-14000\, dt\\=-14000\int {e^{-\ln(2)t}}\, dt\\=-14000\times \frac{e^{-\ln(2)t}}{-\ln(2)}+C\\P(t)=(e^{-\ln(2)t})\times [-14000\times \frac{e^{-\ln(2)t}}{-\ln(2)}+C]\\=\frac{14000}{\ln(2)}+Ce^{-\ln(2)t}](https://tex.z-dn.net/?f=P%28t%29%5C%20e%5E%7B-%5Cln%282%29t%7D%3D%5Cint%20%7Be%5E%7B-%5Cln%282%29t%7D%7D-14000%5C%2C%20dt%5C%5C%3D-14000%5Cint%20%7Be%5E%7B-%5Cln%282%29t%7D%7D%5C%2C%20dt%5C%5C%3D-14000%5Ctimes%20%5Cfrac%7Be%5E%7B-%5Cln%282%29t%7D%7D%7B-%5Cln%282%29%7D%2BC%5C%5CP%28t%29%3D%28e%5E%7B-%5Cln%282%29t%7D%29%5Ctimes%20%5B-14000%5Ctimes%20%5Cfrac%7Be%5E%7B-%5Cln%282%29t%7D%7D%7B-%5Cln%282%29%7D%2BC%5D%5C%5C%3D%5Cfrac%7B14000%7D%7B%5Cln%282%29%7D%2BCe%5E%7B-%5Cln%282%29t%7D)
The initial population is 200,000.
Compute the value of <em>C</em> as follows:
![P(t)=\frac{140000}{\ln(2)}+Ce^{-\ln(2)t}\\200000=\frac{14000}{\ln(2)}+Ce^{-\ln(2)(0)}\\C=200000-\frac{140000}{\ln(2)}\\C=-1977.31](https://tex.z-dn.net/?f=P%28t%29%3D%5Cfrac%7B140000%7D%7B%5Cln%282%29%7D%2BCe%5E%7B-%5Cln%282%29t%7D%5C%5C200000%3D%5Cfrac%7B14000%7D%7B%5Cln%282%29%7D%2BCe%5E%7B-%5Cln%282%29%280%29%7D%5C%5CC%3D200000-%5Cfrac%7B140000%7D%7B%5Cln%282%29%7D%5C%5CC%3D-1977.31)
Now substitute <em>C</em> in P (t),
![P(t)=\frac{140000}{\ln(2)}+Ce^{\ln(2)t}\\P(t)=201977.31-1977.31\times 2^{t}](https://tex.z-dn.net/?f=P%28t%29%3D%5Cfrac%7B140000%7D%7B%5Cln%282%29%7D%2BCe%5E%7B%5Cln%282%29t%7D%5C%5CP%28t%29%3D201977.31-1977.31%5Ctimes%202%5E%7Bt%7D)