Answer:
Explanation:
A ) When gymnast is motionless , he is in equilibrium
T = mg
= 63 x 9.81
= 618.03 N
B )
When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.
T = mg
= 618.03 N
C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2
Net force on it = T - mg , acting in upward direction
T - mg = m a
T = mg + m a
= m ( g + a )
= 63 ( 9.81 + .6)
= 655.83 N
D ) If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2
Net force acting in downward direction
mg - T = ma
T = m ( g - a )
= 63 x ( 9.81 - .6 )
= 580.23 N
The volume of a warmed part of the air is reduced and its density increases.
Explanation:
In a convective form of heat transfer, the volume of a warmed part of air is not reduced and its density does not increase.
During convection, heat causes the warm part of the air to expand and its volume increases. When volume increases, density is reduced.
- Convection is a form of heat transfer that involves the actual movement of particles of the medium.
- It usually occurs in fluids i.e gases and liquids.
- In convection, the cold part exerts a buoyant force on the warmer air below and causes it to rise.
- As the warmer part is rising the cooler part replaces it and a convective cell is formed in the process.
Learn more:
Energy transfer in the sun brainly.com/question/1140127
#learnwithBrainly
Answer:
T = 0.0088 m²/s
Explanation:
given,
initial piezometric elevation = 12.5 m
thickness of aquifer = 14 m
discharge = 28.24 L/s = 0.02824 m³/s
we know

k = 0.629 mm/sec
Transmissibilty
T = k × H
T = 0.629 × 14 × 10⁻³
T = 0.0088 m²/s
The spiral structure emerges when galactic clusters (open), H II regions and O & B type stars (young stars) are used as tracers. We know this to be true as other pinwheel galaxies exhibit the same patterns across these tracers as in the milky way.
Responder:
20πrads ^ -1; 24πrads ^ -1; 0,1 seg; 10 Hz
Explicación:
Dado lo siguiente:
Radio (r) del círculo = 120 cm
600 revoluciones por minuto en radianes por segundo
(600 / min) * (2π rad / 1 rev) * (1min / 60seg)
(1200πrad / 60sec) = 20π rad ^ -1
Velocidad angular (w) = 20πrads ^ -1
Velocidad lineal = radio (r) * velocidad angular (w)
Velocidad lineal = (120/100) * 20πrad
Velocidad lineal = 1.2 * 20πrads ^ -1 = 24πrads ^ -1
C.) Período (T):
T = 2π / w = 2π / 20π = 0.1 seg
D.) Frecuencia (f):
f = 1 / T = 1 / 0.1
1 / 0,1 = 10 Hz