Answer:
The Hardy-Weinberg law states that in a sufficiently large population, in which matings occur randomly and that is not subject to mutation, selection or migration, gene and genotypic free frequencies are kept constant from one generation to another, once a state of equilibrium has been reached, which in autosomal loci is reached after one generation.
It is said that a population is in equilibrium when the alleles of the polymorphic systems maintain their frequency in the population throughout the generations.
Answer:
No cellular energy is needed in the Passive transport.
Explanation:
A movement of atomic molecules and ions throughout the cell membrane is known as passive transport. In this transportation of molecules no cellular energy is used.
As this movement is influenced by the tendency to grow as entropy, the energy is not in need unlike the active transport. Its rate depends on the permeability of cell membrane. There are four types of passive transport- facilitated diffusion, simple diffusion osmosis or filtration.
Hi!
The correct option is B. Which genes are active.
Embryonic differentiation is a developmental process by which embryonic cells give rise to specialized cells and a diverse range of tissue structures. All of this unique cells essentially rise from a type of cells that are known as pluripotent cells.
But how do these pluripotent embryonic stem cells know which cells to differentiate into? This is where genes come into play. The cell has an inherent signalling ability that determines which gene is to be active and expressed. These specifically activated genes then translate into proteins for which it is specific, giving each cell, tissue and organ its particular identity.
Hope this helps!