Let p be
the population proportion. <span>
We have p=0.60, n=200 and we are asked to find
P(^p<0.58). </span>
The thumb of the rule is since n*p = 200*0.60
and n*(1-p)= 200*(1-0.60) = 80 are both at least greater than 5, then n is
considered to be large and hence the sampling distribution of sample
proportion-^p will follow the z standard normal distribution. Hence this
sampling distribution will have the mean of all sample proportions- U^p = p =
0.60 and the standard deviation of all sample proportions- δ^p = √[p*(1-p)/n] =
√[0.60*(1-0.60)/200] = √0.0012.
So, the probability that the sample proportion
is less than 0.58
= P(^p<0.58)
= P{[(^p-U^p)/√[p*(1-p)/n]<[(0.58-0.60)/√0...
= P(z<-0.58)
= P(z<0) - P(-0.58<z<0)
= 0.5 - 0.2190
= 0.281
<span>So, there is 0.281 or 28.1% probability that the
sample proportion is less than 0.58. </span>
Answer:
a number, t, increased by 23
a number, t, plus 23
Step-by-step explanation:
Have a lovely rest of your day/night, and good luck with your assignments! ♡
~ ren ⚘
We have an equation with parentheses. To make our lives easier, first get rid of the parentheses. We do this by using the distributive property.
It is used like this: a(b + c) = ab + ac.
Use the distributive property on the left-hand side.
3(x - 1) = 6
3x - 3 = 6
Now we have an equation that is easier.
The x variable is being multiplied by 3 and added to -3.
Reverse all of these operations with their inverse operation.
3x - 3 = 6
3x = 9 <--- I got rid of the -3 term by using the inverse of subtraction. Addition.
And I did the same for both sides to keep the equation true.
x = 3 <--- The inverse of multiplication is division.
So, I divided both sides by 3.
So, x is equal to 3.
Answer:
Systolic on right

Systolic on left

So for this case we have more variation for the data of systolic on left compared to the data systolic on right but the difference is not big since 0.170-0.147 = 0.023.
Step-by-step explanation:
Assuming the following data:
Systolic (#'s on right) Diastolic (#'s on left)
117; 80
126; 77
158; 76
96; 51
157; 90
122; 89
116; 60
134; 64
127; 72
122; 83
The coefficient of variation is defined as " a statistical measure of the dispersion of data points in a data series around the mean" and is defined as:

And the best estimator is 
Systolic on right
We can calculate the mean and deviation with the following formulas:
[te]\bar x = \frac{\sum_{i=1}^n X_i}{n}[/tex]

For this case we have the following values:

So then the coeffcient of variation is given by:

Systolic on left
For this case we have the following values:

So then the coeffcient of variation is given by:

So for this case we have more variation for the data of systolic on left compared to the data systolic on right but the difference is not big since 0.170-0.147 = 0.023.
Answer:
i need points lol
Step-by-step explanation:
sorryyyyy