Answer:

Step-by-step explanation:
![{x}^{ - 2} {y}^{3} \sqrt[3]{ 64{x}^{5} {y}^{3} } = a {x}^{b} {y}^{c} \\ \\ {x}^{ - 2} {y}^{3} \times 4 \times {x}^{ \frac{5}{3} } \times y= a {x}^{b} {y}^{c} \\ \\ 4 {x}^{ \frac{5}{3} - 2 } {y}^{3 + 1} = a {x}^{b} {y}^{c} \\ \\ 4 {x}^{ \frac{5 - 6}{3} } {y}^{4} = a {x}^{b} {y}^{c} \\ \\ 4 {x}^{ \frac{ - 1}{3} } {y}^{4} = a {x}^{b} {y}^{c} \\ \\ equating \: like \: terms \: on \: both \: sides \\ \\ a = 4 \\ \\ b = - \frac{1}{3} \\ \\ c = 4 \\ \\ abc = 4 \times ( - \frac{1}{3} ) \times 4 \\ \\ = 16 \times ( - \frac{1}{3} ) \\ \\ abc = - \frac{16}{3}](https://tex.z-dn.net/?f=%20%7Bx%7D%5E%7B%20-%202%7D%20%20%7By%7D%5E%7B3%7D%20%20%5Csqrt%5B3%5D%7B%2064%7Bx%7D%5E%7B5%7D%20%20%7By%7D%5E%7B3%7D%20%7D%20%20%3D%20a%20%7Bx%7D%5E%7Bb%7D%20%20%7By%7D%5E%7Bc%7D%20%20%5C%5C%20%20%5C%5C%20%20%7Bx%7D%5E%7B%20-%202%7D%20%20%7By%7D%5E%7B3%7D%20%20%20%5Ctimes%204%20%5Ctimes%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B5%7D%7B3%7D%20%7D%20%20%20%5Ctimes%20y%3D%20a%20%7Bx%7D%5E%7Bb%7D%20%20%7By%7D%5E%7Bc%7D%20%20%20%5C%5C%20%20%5C%5C%204%20%7Bx%7D%5E%7B%20%5Cfrac%7B5%7D%7B3%7D%20-%202%20%7D%20%20%7By%7D%5E%7B3%20%2B%201%7D%20%20%3D%20a%20%7Bx%7D%5E%7Bb%7D%20%20%7By%7D%5E%7Bc%7D%20%20%20%5C%5C%20%20%5C%5C%204%20%7Bx%7D%5E%7B%20%5Cfrac%7B5%20-%206%7D%7B3%7D%20%7D%20%20%7By%7D%5E%7B4%7D%20%20%3D%20a%20%7Bx%7D%5E%7Bb%7D%20%20%7By%7D%5E%7Bc%7D%20%20%20%5C%5C%20%20%5C%5C%204%20%7Bx%7D%5E%7B%20%5Cfrac%7B%20-%201%7D%7B3%7D%20%7D%20%20%7By%7D%5E%7B4%7D%20%20%3D%20a%20%7Bx%7D%5E%7Bb%7D%20%20%7By%7D%5E%7Bc%7D%20%20%20%5C%5C%20%20%5C%5C%20equating%20%5C%3A%20like%20%5C%3A%20terms%20%5C%3A%20on%20%5C%3A%20both%20%5C%3A%20sides%20%5C%5C%20%20%5C%5C%20a%20%3D%204%20%5C%5C%20%20%5C%5C%20b%20%3D%20%20%20-%20%5Cfrac%7B1%7D%7B3%7D%20%20%5C%5C%20%20%5C%5C%20c%20%3D%204%20%5C%5C%20%20%5C%5C%20abc%20%3D%204%20%5Ctimes%20%28%20-%20%20%5Cfrac%7B1%7D%7B3%7D%20%29%20%5Ctimes%204%20%5C%5C%20%20%5C%5C%20%20%3D%2016%20%5Ctimes%20%28%20-%20%20%5Cfrac%7B1%7D%7B3%7D%20%29%20%5C%5C%20%20%5C%5C%20abc%20%3D%20%20-%20%20%5Cfrac%7B16%7D%7B3%7D%20)
The simplified form of the expression is 3b+2a/(ab)²
<h3>Sum of fractions</h3>
Fractions are written as a ratio of two integers. Given the expression below;
3/a^2b + 2/ab^2
Find the LCM
3/a^2b + 2/ab^2 = 3b+2a/a²b²
3/a^2b + 2/ab^2 = 3b+2a/(ab)²
Hence the simplified form of the expression is 3b+2a/(ab)²
Learn more on sum of fraction here: brainly.com/question/11562149
#SPJ1
Answer:
c
Step-by-step explanation:
Hmmmmmmmmmmmmmmmmmmmmmmmm
0
Answer:
(i) 7/10
(ii) 3/10
(iii) 1/5
(iv) Rs 40,000
Step-by-step explanation:
The fraction of the salary spent on food = 1/2
The fraction of the salary spent on rented house fee = 1/5
(i) The fraction spent for both food and rental fee = (1/2) + (1/5) = (5 + 2)/10 = 7/10
(ii) The remainder (rest) of the salary = 1 - 7/10 = 3/10
The fraction of the remainder spent for children's education = 1/3
The fraction of the total salary spent for the children's education = (1/3) × (3/10) = 1/10
(iii) The remaining portion deposited in the bank = 1 - (1/10 + 7/10)) = 2/10 = 1/5
(iv) The amount equal to portion of 1/5 of his salary deposited in the bank is Rs 8000
Let <em>x</em> represent his whole salary, we have;
(1/5) × x = Rs 8,000
x = 5 × Rs 8,000 = Rs 40,000
His whole salary is Rs 40,000.