You can start by looking at the mode of the set of number automatically b and d are eliminated. We then proceed to calculate the mean so add all the numbers in A so it’ll be, 52 then divide by the amount of numbers in the set so 6. 52/6 =8.6
And C ends up being 48 so 48/6 = 8
Therefore your answer is C
6 is 9.088 because it said it for u
The required proof is given in the table below:
![\begin{tabular}{|p{4cm}|p{6cm}|} Statement & Reason \\ [1ex] 1. $\overline{BD}$ bisects $\angle ABC$ & 1. Given \\ 2. \angle DBC\cong\angle ABD & 2. De(finition of angle bisector \\ 3. $\overline{AE}$||$\overline{BD}$ & 3. Given \\ 4. \angle AEB\cong\angle DBC & 4. Corresponding angles \\ 5. \angle AEB\cong\angle ABD & 5. Transitive property of equality \\ 6. \angle ABD\cong\angle BAE & 6. Alternate angles \end{tabular}](https://tex.z-dn.net/?f=%20%5Cbegin%7Btabular%7D%7B%7Cp%7B4cm%7D%7Cp%7B6cm%7D%7C%7D%20%0A%20Statement%20%26%20Reason%20%5C%5C%20%5B1ex%5D%20%0A1.%20%24%5Coverline%7BBD%7D%24%20bisects%20%24%5Cangle%20ABC%24%20%26%201.%20Given%20%5C%5C%0A2.%20%5Cangle%20DBC%5Ccong%5Cangle%20ABD%20%26%202.%20De%28finition%20of%20angle%20bisector%20%5C%5C%20%0A3.%20%24%5Coverline%7BAE%7D%24%7C%7C%24%5Coverline%7BBD%7D%24%20%26%203.%20Given%20%5C%5C%20%0A4.%20%5Cangle%20AEB%5Ccong%5Cangle%20DBC%20%26%204.%20Corresponding%20angles%20%5C%5C%0A5.%20%5Cangle%20AEB%5Ccong%5Cangle%20ABD%20%26%205.%20Transitive%20property%20of%20equality%20%5C%5C%20%0A6.%20%5Cangle%20ABD%5Ccong%5Cangle%20BAE%20%26%206.%20Alternate%20angles%0A%5Cend%7Btabular%7D)
Step-by-step explanation:
as the other guy say it a for real
Answer:
79
Step-by-step explanation:
78
---------
7 | 62 03
49
----------
148 | 13 03
11 84
-----------
19
-----------
78^2 = 6084.
We observe that 78^2 < 6203.
79^2 = 6241.
We observe that 79^2 > 6203.
Hence the number to be added to 6203 is 6241 - 6203 = 38.
6203 + 38 = 3241
= 79 * 79
= 79.
Therefore 38 should be added to 6203 to obtain a perfect square.