A sample of octane undergoes combustion according to the equation 2 C8H18 + 25 O2 → 16 CO2 + 18 H2O ΔH°rxn = -11018 kJ. What mas
s of O2 (in grams) must react in order to generate 7280 kJ of energy?
1 answer:
Answer:

Explanation:
It often helps to write the heat as if it were a reactant or a product in the thermochemical equation.
Then you can consider it to be 11018 "moles" of "kJ"
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
M_r: 32.00
2C₈H₁₈ + 25O₂ ⟶ 16CO₂ + 8H₂O + 11 018 kJ
n/mol: 7280
1. Moles of O₂
The molar ratio is 25 mol O₂:11 018 kJ

2. Mass of O₂

You might be interested in
Explanation: just add the atomic masses on the periodic table together for each atom.
Answer:
becoz they want so
we cant explain ^^
Answer: option B.
carbon + oxygen → carbon dioxide
Explanation:
Explanation:
from the equation 1 mole of O2 will give 2 moles of H2O then 6.0 moles of O2 will give x
6.0*2 moles/ 1 mole
= 12 moles
this implies that, 6.0 moles of O2 will give = 12 moles of water
Answer:
chemical reactions which proceed with the release of heat energy are called exothermic reactions