Answer:
10 m
Explanation:
The mole fraction of FeCl₃ of 0.15, that is, per mole of solution, there are 0.15 moles of FeCl₃ and 1 - 0.15 = 0.85 moles of water.
The molar mass of water is 18.02 g/mol. The mass corresponding to 0.85 moles is:
0.85 mol × 18.02 g/mol = 15 g = 0.015 kg
The molality of FeCl₃ is:
m = moles of solute / kilogram of solvent
m = 0.15 mol / 0.015 kg
m = 10 m
Answer:
Four
Step-by-step explanation:
The <em>superscripts</em> in an electron configuration tell us how many electrons are in a subshell.
If the electron configuration is 1s¹ 2s¹2p², the total number of electrons is
1 + 1 + 2 = 4
The atom contains four electrons.
<em>Note</em>: this atom is in an <em>excited state</em>, because the 1s and 2s subshells can each hold one more electron.
Answer:
3.861x10⁻⁹ mol Pb⁺²
Explanation:
We can <u>define ppm as mg of Pb²⁺ per liter of water</u>.
We<u> calculate the mass of lead ion in 100 mL of water</u>:
- 100.0 mL ⇒ 100.0 / 1000 = 0.100 L
- 0.100 L * 0.0080 ppm = 8x10⁻⁴ mg Pb⁺²
Now we <u>convert mass of lead to moles</u>, using its molar mass:
- 8x10⁻⁴ mg ⇒ 8x10⁻⁴ / 1000 = 8x10⁻⁷ g
- 8x10⁻⁷ g Pb²⁺ ÷ 207.2 g/mol = 3.861x10⁻⁹ mol Pb⁺²
This is the reaction formula,
4Fe+3O2=2Fe2O3
<span>3Fe+202=Fe3O4
it has o</span>xygen atom after it's rusted
Answer:
c. Kay's rule
Explanation:
Kay's rule -
The rule is used to determine the pseudo reduced critical parameters of mixture , with the help of using the critical properties of the components of a given mixture .
The equation for Kay's rule is as follows ,
PV = Z RT
Where Z = The compressibility factor of the mixture .
Hence from the given options , the correct answer is Kay's rule .