the common attributes are positive and negatively charged
Answer:
0.955286 j
Explanation:
A 500.0 kg module is attached to a 440.0 kg shuttle craft, which moves at 1050. m/s relative to the stationary main spaceship. Then a small explosion sends the module backward with speed 100.0 m/s relative to the new speed of the shuttle craft. As measured by someone on the main spaceship, by what fraction did the kinetic energy of the module and shuttle craft, Ki, increase because of the explosion?
M=500 kg, m=440 kg
V=1000 m/s, v = 100 m/s
Let relative speed =Vs
Momentum rule says
(M+m)V=mVs+M(Vs-v)
940(1000)=500(Vs-100)+440Vs
940000=500Vs-50000+440Vs
940Vs=940000+50000
940Vs=990000
Vs= 990000/940=1053.19 m/s
So, the module speed = Vs-v=1053.19-100=953.19 m/s
Fractional increase in KE is given by;
Total KE after explosion / He before explosion
=500(953.19)2+ 400(1053.19)2/ 940(1000)2= 0.955286
Answer:
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
Explanation:
Joule -Thompson effect
Throttling phenomenon is called Joule -Thompson effect.We know that throttling is a process in which pressure energy will convert in to thermal energy.
Generally in throttling exit pressure is low as compare to inlet pressure but exit temperature maybe more or less or maybe remains constant depending upon flow or fluid flow through passes.
Now lets take Steady flow process
Let
Pressure and temperature at inlet and
Pressure and temperature at exit
We know that Joule -Thompson coefficient given as

Now from T-ds equation
dh=Tds=vdp
So
![Tds=C_pdt-\left [T\left(\frac{\partial v}{\partial T}\right)_p\right]dp](https://tex.z-dn.net/?f=Tds%3DC_pdt-%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p%5Cright%5Ddp)
⇒![dh=C_pdt-\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=dh%3DC_pdt-%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
So Joule -Thompson coefficient
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
This is Joule -Thompson coefficient for all gas (real or ideal gas)
We know that for Ideal gas Pv=mRT

So by putting the values in
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
For ideal gas.
Answer:
a useful sporting analogy ... Teachers of science routinely use analogies to help ... balls over the bar and you will probably find that.
Answer:
Explanation:
W = 75 watts
V = 110 volts
Formula
W = V * I
Solution
75 = 110 * I Divide by 110
75 / 110 = I
I = 0.6818 Amperes