Answer:
4.36 seconds
Explanation:
According to the question;
- Force is 550 N
- Mass of the car is 1200 kg
- Velocity of the car is 2.0 m/s
We are needed to find the time the car must the tow track pull the car.
- From Newton's second law of motion;
- Impulsive force, F = Mv÷t , where m is the mass, v is the velocity and t is the time.
Rearranging the formula;
t = mv ÷ F
Thus;
Time = (1200 kg × 2.0 m/s²) ÷ 550 N
= 4.36 seconds
Thus, the time needed to pull the car is 4.36 seconds
Answer:
(a) g = 8.82158145
.
(b) 7699.990192m/s.
(c)5484.3301s = 1.5234 hours.(extremely fast).
Explanation:
(a) Strength of gravitational field 'g' by definition is
, here G is Gravitational Constant, and r is distance from center of earth, all the values will remain same except r which will be radius of earth + altitude at which ISS is in orbit.
r = 6721,000 meters, putting this value in above equation gives g = 8.82158145
.
(b) We have to essentially calculate centripetal acceleration that equals new 'g'.
here g is known, r is known and v is unknown.
plugging in r and g in above and solving for unknown gives V = 7699.990192m/s.
(c) S = vT, here T is time period or time required to complete one full revolution.
S = earth's circumfrence , V is calculated in (B) T is unknown.
solving for unknown gives T = 5484.3301s = 1.5234hours.
Answer:
The z-component of the force is
Explanation:
From the question we are told that
The charge on the particle is
The magnitude of the magnetic field is 
The velocity of the particle toward the x-direction is 
The velocity of the particle toward the y-direction is

The velocity of the particle toward the z-direction is

Generally the force on this particle is mathematically represented as

So we have

substituting values
So the z-component of the force is
Note : The cross-multiplication template of unit vectors is shown on the first uploaded image ( From Wikibooks ).
Answer:
a) the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis
b) the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)
Explanation:
a) the polarization the determined wave oscillates the electric field, which is the z axis
As the wave travels on the negative x-axis and the magnetic field is perpendicular, this field goes on the positive y-axis
the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis
be) in the case of a polarization in the xi plane the magnetic field must go in the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)
Not knowing how to convert the type of measurement according to your way of learning from where ever you come from.