Answer:
The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.
Explanation:
We know that,
Mass of electron 
Rest mass energy for electron = 0.511 Mev
(a). The energy required to accelerate an electron from 0.500c to 0.900c Mev
Using formula of rest,



(b). The energy required to accelerate an electron from 0.900c to 0.942c Mev
Using formula of rest,



Hence, The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.
Answer:
(3) The period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4) he gravitational force between the Sun and Neptune is 6.75 x 10²⁰ N
Explanation:
(3) The period of a satellite is given as;

where;
T is the period of the satellite
M is mass of Earth
r is the radius of the orbit
Thus, the period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4)
Given;
mass of the ball, m₁ = 1.99 x 10⁴⁰ kg
mass of Neptune, m₂ = 1.03 x 10²⁶ kg
mass of Sun, m₃ = 1.99 x 10³⁰ kg
distance between the Sun and Neptune, r = 4.5 x 10¹² m
The gravitational force between the Sun and Neptune is calculated as;

Answer:
A force
Explanation:
A push or a pull is an example of a force and can cause an object to speed up, slow down, etc.. Newton's laws tell us that 1- an object will not change its motion unless a force acts on it 2- the force on an object is equal to its mass times its acceleration. 3- The third law states that for every action (force) in nature there is an equal and opposite reaction.. However, forces like gravity and friction can resist movement.
Answer:
Form of energy: Example
1. Light energy: Electromagnetic radiation
2. Nuclear energy: Nuclear fission
3. Chemical energy: Energy stored in plant matter
4. Electrical energy: Lightning
5. Thermal energy: A hot surface
6. Sound energy: A tuning fork
7. Solar energy: Energy from the Sun
8. Mechanical energy: A moving vehicle