1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firdavs [7]
3 years ago
7

-x - 4y = 16 find value of y when x equals -8

Mathematics
2 answers:
pashok25 [27]3 years ago
8 0
The answer is -2......
mixas84 [53]3 years ago
3 0
In -x - 4y = 16, the value of y when x equals -8 is -2.

-(-8) - 4y = 16
8 - 4y = 16
-4y = 8
y = -2

Hope this helps!
You might be interested in
Is this statement true or false?
Sphinxa [80]
There is no clutch pedal in an automatic transmission car.
3 0
4 years ago
Read 2 more answers
Will be giving brainlest
PSYCHO15rus [73]

Answer:

sorry dont know

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
I need help I don’t understand
Arte-miy333 [17]
Use mathpapa.com or cymath.com

7 0
3 years ago
Euler's formula, V – E + F = 2 relates the number of vertices V, the number of edges E, and the number of faces F of a polyhedro
Alla [95]
F=??
4 vertices mean V=4
6 edges mean E=6
4-6+F=2
-2+F=2
F=4
3 0
3 years ago
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
4 years ago
Other questions:
  • 1 2/3 yards of chain cost 9.00 how much does it cost per chain
    5·1 answer
  • The population in Rochester, New York, was 219,773 people in 2000 and 210,565 people in 2010. By about what percent did the popu
    10·1 answer
  • Find the sum. (3a2 + 2ab + 2b) + (5a2 − 3ab + 9)
    6·2 answers
  • It takes carlos 5 minutes to bike one mile. how many minutes would it take him to bike 4 miles
    11·1 answer
  • Problem Solving
    10·1 answer
  • Mikel gave a $1.32 tip for an order that cost $8.80
    5·1 answer
  • Lin rode her bike 2 miles in 8 minutes. She rode at a constant speed. Complete the table to show the time it took her to travel
    5·1 answer
  • Find the value of cos J rounded to the nearest hundredth, if necessary.
    12·2 answers
  • PLEASE ANSWER QUICKLY THX!!!!!!!!!!!!!!!!!!
    6·1 answer
  • Luis starts to do a division problem and notices that there is a pattern in the digits to the right of the decimal point.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!