Answer:14/15
Step-by-step explanation:
There are multiple answers like 15 16 17 18 19 and also 20. Are the correct answers
Answer:
All of them.
Step-by-step explanation:
For rational functions, the domain is all real numbers <em>except</em> for the zeros of the denominator.
Therefore, to find the x-values that are not in the domain, we need to solve for the zeros of the denominator. Therefore, set the denominator to zero:

Zero Product Property:

Solve for the x in each of the three equations. The first one is already solved. Thus:

Thus, the values that <em>cannot</em> be in the domain of the rational function is:

Click all the options.
Answer:
48
Step-by-step explanation:
f(x) = x³
f'(x) = 3x²
f'(-4) = 3(-4)²
f'(-4) = 48
Equation 1: y = -2x + 1
Equation 2: y = 2x - 3
Since both equations already have y isolated, we are able to simply set the right side of both equations equal to each other. Since we know that the value of y must be the same, we can do this.
-2x + 1 = 2x - 3
1 = 4x - 3
4 = 4x
x = 1
Then, we need to plug our value of x back into either of the original two equations and solve for y. I will be plugging x back into equation 2 above.
y = 2x - 3
y = 2(1) - 3
y = 2 - 3
y = -1
Hope this helps!! :)