1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notsponge [240]
3 years ago
15

Aliyah has some candy to give to her four children. She first took ten pieces for herself and then eventually divided the rest a

mong her children. Each child revived two pieces. With how many pieces did she start?
Mathematics
2 answers:
saw5 [17]3 years ago
6 0
It would be 18 because you have to add 2+4=8 then you and 10. So your answer would be 18 pieces.
adelina 88 [10]3 years ago
5 0

Answer:

Aliyah started with 18 pieces

You might be interested in
Mrs. Smith is creating a rectangular flower bed such that the width is half of the
Brilliant_brown [7]

Answer:

As for this problem, we will first establish that the length of the flower bed be represented as x, the width of the flower bed be represented as x/2 ,and the area of the flower bed be taken as it is since it is given. We then follow the formula for area which is length multiplied to width which is:

A = LW

we then substitute them

34 square feet = x (x/2)

now all we need to do is find x first.

34 square feet = x squared / 2

now do a cross multiplication

68 square feet = x squared

then get the square root of both sides

8.246 feet = x

Since x is equal to the length of the flower bed, all we have to do to get the width of it is to divide it by 2. So...

W = x/2

W = 8.246 feet / 2

W = 4.123 feet

And since the problem asked it to find the width of the flower bed to the nearest tenth of a foot, the answer would be 4.1 ft.

6 0
3 years ago
If y varies directly as the square root of x and y=12 when x = 16 , find x when y = 15
a_sh-v [17]
= 19 this is the answer I'm guessing since 16-12= 4 so 16 is 4 more than 12
3 0
4 years ago
Kira drew PQR and STU so that P S, Q T, PR = 12, and SU = 3. Are PQR and STU similar? If so, identify the similarity postulate o
Debora [2.8K]
B. Similar- Angle Angle Similarity Theorem
This theorem states that if 2 angles of a triangle are congruent to two angles of another triangle, then the two triangles are similar.
Hope this helps :) 
8 0
3 years ago
Read 2 more answers
Suppose that one-way commute times in a particular city are normally distributed with a mean of 15.43 minutes and a standard dev
vovikov84 [41]

Answer:

Yes, a commute time between 10 and 11.8 minutes would be unusual.

Step-by-step explanation:

A probability is said to be unusual if it is lower than 5% of higher than 95%.

We use the normal probability distribution to solve this question.

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

\mu = 15.43, \sigma = 2.142

Would it be unusual for a commute time to be between 10 and 11.8 minutes?

The first step to solve this problem is finding the probability that the commute time is between 10 and 11.8 minutes. This is the pvalue of Z when X = 11.8 subtracted by the pvalue of Z when X = 10. So

X = 11.8

Z = \frac{X - \mu}{\sigma}

Z = \frac{11.8 - 15.43}{2.142}

Z = -1.69

Z = -1.69 has a pvalue of 0.0455

X = 10

Z = \frac{X - \mu}{\sigma}

Z = \frac{10 - 15.43}{2.142}

Z = -2.54

Z = -2.54 has a pvalue of 0.0055

So there is a 0.0455 - 0.0055 = 0.04 = 4% probability that the commute time is between 10 and 11.8 minutes.

This probability is lower than 4%, which means that yes, it would be unusual for a commute time to be between 10 and 11.8 minutes.

7 0
3 years ago
Terbium-160 has a half-life of about 72 days.
Nastasia [14]
For the half-life of a certain substance, the equation that would best represent the scenario is,
                             At = Ao(0.5^t/n)
where At is the amount at any time t, Ao is the original amount, and n is half-life. Substituting the known values,
                            At = (220 mg)(0.5^(396/72)
                            At = 4.86 mg
Thus, after 396 days, there will only be 4.86 mg of Terbium-160. 
5 0
3 years ago
Other questions:
  • Becca borrowed $220 from her cousin at the rate of 5.25% per year. If the inflation rate was 1.5% that year what is her cousins
    5·1 answer
  • Gcf of 3y^2,6y^3,10y^4
    5·1 answer
  • tommy is buying used books for school. the price of the books is $180. he uses the 30%-off student discount and there is a 4% sa
    7·1 answer
  • 6 cars, 10 trucks, 14 SUV, 15 minivans. If 150 vehicles passed Luann, how many more minivans than cars would you expect to pass
    6·1 answer
  • [(25 - 11) + (15-9)] *5
    5·2 answers
  • Suppose a city with population 900000 has been growing at a rate of 7​% per year. If this rate​ continues, find the population o
    5·2 answers
  • 2х + 5y = 0<br> 3х – 4у = 23
    14·2 answers
  • (BRAINLIEST) What is the solution to this system of equations?
    10·2 answers
  • Find the missing side length
    14·1 answer
  • PLEASE HELP!!<br><br> Only answer if you're absolutely correct, please and thank you.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!