Answer: An electron will jump to a higher energy level when excited by an external energy gain such as a large heat increase or the presence of an electrical field, or collision with another electron.
Explanation:
Answer:
9.12 * 10^20 photons
Explanation:
Given that;
E=n⋅h⋅ν
Where;
E= energy of the electromagnetic radiation
n = number of photons
h = Plank's constant
ν = frequency of electromagnetic radiation
Hence;
n = E/hν
n = 3.46 × 10 -19/6.6 * 10^-34 * 575 * 10^-9
n = 3.46 × 10 -19/3795 * 10^-43
n= 9.12 * 10^20 photons
Answer:
Step 1;
q = w = -0.52571 kJ, ΔS = 0.876 J/K
Step 2
q = 0, w = ΔU = -7.5 kJ, ΔH = -5.00574 kJ
Explanation:
The given parameters are;
= 100 N·m
= 327 K
= 90 N·m
Step 1
For isothermal expansion, we have;
ΔU = ΔH = 0
w = n·R·T·ln(/) = 1 × 8.314 × 600.15 × ln(90/100) = -525.71
w ≈<em> -0.52571</em> kJ
At state 1, q = w = -0.52571 kJ
ΔS = -n·R·ln(/) = -1 × 8.314 × ln(90/100) ≈ 0.876
ΔS ≈ 0.876 J/K
Step 2
q = 0 for adiabatic process
ΔU = 25×(27 - 327) = -7,500
w = ΔU = <em>-7.5 kJ</em>
ΔH = ΔU + n·R·ΔT
ΔH = -7,500 + 8.3142 × 300 = -5,005.74
ΔH = ΔU = <em>-5.00574 kJ</em>
.
Sorry, I'm am not going to entertain you!
But, have a great day!
#LearnWithBrainly
-
Plus, here is a anime image that might make your day happy. . .