Answer: v = 2.24 m/s
Explanation: The <u>Law</u> <u>of</u> <u>Conservation</u> <u>of</u> <u>Energy</u> states that total energy is constant in any process and, it cannot be created nor destroyed, only transformed.
So, in the toy launcher, the energy of the compressed spring, called <u>Elastic</u> <u>Potential</u> <u>Energy (PE)</u>, transforms into the movement of the plastic sphere, called <u>Kinetic</u> <u>Energy (KE)</u>. Since total energy must be constant:

where the terms with subscript i are related to the initial of the process and the terms with subscript f relates to the final process.
The equation is calculated as:






v = 2.24
The maximum speed the plastic sphere will be launched is 2.24 m/s.
Answer:
<h3>The answer is 12 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>12 m/s²</h3>
Hope this helps you
Answer:
42.417 cm³
Explanation:
The formula to find the volume of a cone is :
V =
× π r² h
Here,
r ⇒ radius ⇒ 3 cm
h ⇒ height ⇒ 4.5 cm
<u>Let us find it now.</u>
V =
× π r² h
V =
× π × 3 × 3 × 4.5
V =
× π × 9 × 4.5
V =
× π × 9 × 4.5
V =
× π × 40.5
V =
× 3.142 × 40.5
V =
× 127.251
V = <u>42.417 cm³</u>
Ok
........................
Answer:
1302 K or 1029 C
Explanation:
Air at atmospheric pressure has pressure of 1 atm
20 C = 20 + 273 = 293 K
Assume ideal gas, according to the ideal gas law:

Where P1, V1 and T1 are the pressure, volume and temperature of the gas before the compression and P2, V2 and T2 are the pressure, volume and temperature of the gas after the compression

Since the gas is compressed to 1/9 of its original volume, V2/V1 = 1/9:
or 1029 C