Answer:
22425 J
Explanation:
From the question,
Applying
Q = cm(t₂-t₁).................. Equation 1
Where Q = Thermal Energy, c = specific heat capacity of aluminium, m = mass of aluminium, t₂ = Final Temperature, t₁ = Initial Temperature.
Given: c = 897 J/kg.K, m = 1.0 kg, t₁ = 50 °C, t₂ = 25 °C (The final temperature is reduced by half)
Substitute these values into equation 1
Q = 897×1×(25-50)
Q = 897×(-25)
Q = -22425 J
Hence the thermal energy lost by the aluminium is 22425 J
The value was determined to be 0.122 m/s. The velocity of a body or object determines its direction of motion. Speed is a scalar quantity in its most fundamental form.
Velocity is essentially a vector quantity. It is the rate of change in distance. The initial speed of the first train, which has a mass of 150,000 kg, is 0.3 m/s. The second train has an initial speed of -0.120 m/s and a mass of 110,000 kg.
Let v represent the post-collision speed of the connected mass.
Utilize the idea of momentum.
The speed of the trains is constant both before and after a collision.
150.000 + 110.000v 45.000 - 13200 = 260.000 v 31800 = 260.000 v v = 0.122 m/s 150000 x 0.3 - 110000 x 0.120
After colliding, they move at a speed of 0.122 m/s towards the direction of the right.
Learn more about velocity here-
brainly.com/question/18084516
#SPJ4
Sound Waves will be an example of mechanical waves.. hope this helps!