Option A: The sum for the infinite geometric series does not exist
Explanation:
The given series is 
We need to determine the sum for the infinite geometric series.
<u>Common ratio:</u>
The common difference for the given infinite series is given by

Thus, the common difference is 
<u>Sum of the infinite series:</u>
The sum of the infinite series can be determined using the formula,
where 
Since, the value of r is 3 and the value of r does not lie in the limit 
Hence, the sum for the given infinite geometric series does not exist.
Therefore, Option A is the correct answer.
Answer:
5.22
Step-by-step explanation:
18% = 18/100 or 0.18
18/100 * 29 = 522/100 or 5.22
<span>the thing that everyone say after the bumpy airplane landing was : it's not the airplane's fault and it's not the pilot's fault so it's probably the asphalt
To be fair, there is no way for the passangers to know what may have caused the bump in landing. Everyone only created their own assumptions based om their personal perspective</span>
Aryabhata, also called Aryabhata I or Aryabhata the Elder, (born 476, possibly Ashmaka or Kusumapura, India), astronomer and the earliest Indian mathematician whose work and history are available to modern scholars. He is also known as Aryabhata I or Aryabhata the Elder to distinguish him from a 10th-century Indian mathematician of the same name. He flourished in Kusumapura—near Patalipurta (Patna), then the capital of the Gupta dynasty—where he composed at least two works, Aryabhatiya (c. 499) and the now lost Aryabhatasiddhanta.
Aryabhatasiddhanta circulated mainly in the northwest of India and, through the Sāsānian dynasty (224–651) of Iran, had a profound influence on the development of Islamic astronomy. Its contents are preserved to some extent in the works of Varahamihira (flourished c. 550), Bhaskara I (flourished c. 629), Brahmagupta (598–c. 665), and others. It is one of the earliest astronomical works to assign the start of each day to midnight.
<h2>Mark as brainlist ❤️❤️</h2>
Aryabhatiya was particularly popular in South India, where numerous mathematicians over the ensuing millennium wrote commentaries. The work was written in verse couplets and deals with mathematics and astronomy. Following an introduction that contains astronomical tables and Aryabhata’s system of phonemic number notation in which numbers are represented by a consonant-vowel monosyllable, the work is divided into three sections: Ganita (“Mathematics”), Kala-kriya (“Time Calculations”), and Gola (“Sphere”).