It’s a chemical compound with a sour taste that can react with certain metals to form salts.
<span>test on homozygous recessive plant
</span><span>Similar to the homozygous alleles in every organisms, in the human body is composed of genes, and these usually come in pairs that are slightly different from each other. The different versions of genes are called alleles. Alleles are responsible for determining physical or notable characteristics and traits a specific person has. </span><span>
</span>
In terms of density, the oceanic crust is denser than continental crust, which also means it is heavier.Density is important in the formation of layers on Earth. Because continental crust is less dense, it floats higher than oceanic crust. If the two will have different densities, then continents will be submerged in the ocean.
Answer:
The correct answer is -
1. c. both
2. b. gluconeogenesis
3. d. neither
4. b. gluconeogenesis
5. a. glycolysis
6. c. both
7. a. glycolysis
8. d. neither
Explanation:
Gluconeogenesis is the formation or synthesis of glucose while glycolysis is the conversion of glucose into pyruvate. Gluconeogenesis requires an enzyme for a non-reversal reaction which is not required in glycolysis.
Glyceraldehyde 3-phosphate dehydrogenase is an enzyme present in glycolysis that converts glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate. It is a reversible reaction, this enzyme also present during gluconeogenesis converts 1,3-bisphosphoglycerate to glyceraldehyde 3-phosphate.
Glucose 6-phosphate to glucose during gluconeogenesis by glucose-6-phosphatase. Alcohol dehydrogenase is used for the conversion of ethanol into acetaldehyde and neither present in glyconeogenesis nor glycolysis. Oxaloacetate converts to phosphoenol pyruvate during gluconeogenesis by Phosphoenol pyruvate carboxykinase.
Fructose 6-phosphate changes into fructose 1,6-bisphosphate by Phosphofructokinase-1 during glycolysis.
Phosphoglycerate mutase is present in both pathways during glycolysis and during gluconeogenesis. This enzyme converts 3-phosphoglycerate to 2-phosphoglycerate and also converts 2-phosphoglycerate to 3-phosphoglycerate in glycolysis and gluconeogenesis respectively.
Hexokinase converts glucose to glucose 6-phosphate during glycolysis. However, Pyruvate dehydrogenase neither present in glycolysis nor gluconeogenesis.