F(x) = C , hope this helped !

- Given - <u>a </u><u>rectangle </u><u>with </u><u>length</u><u> </u><u>2</u><u>5</u><u> </u><u>feet </u><u>and </u><u>perimeter </u><u>8</u><u>0</u><u> </u><u>feet</u>
- To calculate - <u>width </u><u>of </u><u>the </u><u>rectangle</u>
We know that ,

where <u>b </u><u>=</u><u> </u><u>width </u><u>/</u><u> </u><u>breadth</u> of rectangle
<u>substituting</u><u> </u><u>the </u><u>values </u><u>in </u><u>the </u><u>formula </u><u>stated </u><u>above </u><u>,</u>

hope helpful ~
Answer:
The exponential function to model the duck population is:
f(n)=415*(1.32)^n, where:
x is the duck population
n is the number of years
Step-by-step explanation:
In order to calculate the duck population you can use the formula to calculate future value:
FV=PV*(1+r)^n
FV=future value
PV=present value
r=rate
n=number of periods of time
In this case, the present value is the initial population of 415 and the rate is 32%. You can replace these values on the formula and the exponential function to model the duck population would be:
f(n)=415*(1+0.32)^n
f(n)=415*(1.32)^n, where:
x is the duck population
n is the number of years
Let y be the unknown number
The other number is x - 12