1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artyom0805 [142]
3 years ago
6

Consider the linear transformation T from V = P2 to W = P2 given by T(a0 + a1t + a2t2) = (2a0 + 3a1 + 3a2) + (6a0 + 4a1 + 4a2)t

+ (−2a0 + 3a1 + 4a2)t2 Let E = (e1, e2, e3) be the ordered basis in P2 given by e1(t) = 1, e2(t) = t, e3(t) = t2 Find the coordinate matrix [T]EE of T relative to the ordered basis E used in both V and W, that is, fill in the blanks below: (Any entry that is a fraction should be entered as a proper fraction, i.e. as either x/y or -x/y where x and y are positive integers with no factors in common.)
Mathematics
1 answer:
Svet_ta [14]3 years ago
8 0

Answer:

[T]EE=\left[\begin{array}{ccc}2&3&3\\6&4&4\\-2&3&4\end{array}\right]

Step-by-step explanation:

First we start by finding the dimension of the matrix [T]EE

The dimension is : Dim (W) x Dim (V) = 3 x 3

Because the dimension of P2 is the number of vectors in any basis of P2 and that number is 3

Then, we are looking for a 3 x 3 matrix.

To find [T]EE we must transform the vectors of the basis E and then that result express it in terms of basis E using coordinates and putting them into columns. The order in which we transform the vectors of basis E is very important.

The first vector of basis E is e1(t) = 1

We calculate T[e1(t)] = T(1)

In the equation : 1 = a0

T(1)=(2.1+3.0+3.0)+(6.1+4.0+4.0)t+(-2.1+3.0+4.0)t^{2}=2+6t-2t^{2}

[T(e1)]E=\left[\begin{array}{c}2&6&-2\\\end{array}\right]

And that is the first column of [T]EE

The second vector of basis E is e2(t) = t

We calculate T[e2(t)] = T(t)

in the equation : 1 = a1

T(t)=(2.0+3.1+3.0)+(6.0+4.1+4.0)t+(-2.0+3.1+4.0)t^{2}=3+4t+3t^{2}

[T(e2)]E=\left[\begin{array}{c}3&4&3\\\end{array}\right]

Finally, the third vector of basis E is e3(t)=t^{2}

T[e3(t)]=T(t^{2})

in the equation : a2 = 1

T(t^{2})=(2.0+3.0+3.1)+(6.0+4.0+4.1)t+(-2.0+3.0+4.1)t^{2}=3+4t+4t^{2}

Then

[T(t^{2})]E=\left[\begin{array}{c}3&4&4\\\end{array}\right]

And that is the third column of [T]EE

Let's write our matrix

[T]EE=\left[\begin{array}{ccc}2&3&3\\6&4&4\\-2&3&4\end{array}\right]

T(X) = AX

Where T(X) is to apply the transformation T to a vector of P2,A is the matrix [T]EE and X is the vector of coordinates in basis E of a vector from P2

For example, if X is the vector of coordinates from e1(t) = 1

X=\left[\begin{array}{c}1&0&0\\\end{array}\right]

AX=\left[\begin{array}{ccc}2&3&3\\6&4&4\\-2&3&4\end{array}\right]\left[\begin{array}{c}1&0&0\\\end{array}\right]=\left[\begin{array}{c}2&6&-2\\\end{array}\right]

Applying the coordinates 2,6 and -2 to the basis E we obtain

2+6t-2t^{2}

That was the original result of T[e1(t)]

You might be interested in
You and a friend go out to eat, the food and drinks cost $22.50, and there is a 9% sales tax. How much is the bill? (Round to th
Ludmilka [50]

Answer:

24.53

Step-by-step explanation:

6 0
3 years ago
What is the length of the diagonal of a 10 cm by 15 cm rectangle
Archy [21]
The length = 18.02
a^2 + b^2 = c^2
10^2 + 15^2 = c^2
100 + 225 = c^2
325=c^2
square root it and you get 18.02
5 0
3 years ago
A small military base housing 1,000 troops, each of whom is susceptible to a certain virus infection. Assuming that during the c
slava [35]

Answer:

I=\frac{1000}{exp^{0,806725*t-0.6906755}+1}

Step-by-step explanation:

The rate of infection is jointly proportional to the number of infected troopers and the number of non-infected ones. It can be expressed as follows:

\frac{dI}{dt}=a*I*(1000-I)

Rearranging and integrating

\frac{dI}{dt}=a*I*(1000-I)\\\\\frac{dI}{I*(1000-I)}=a*dt\\\\\int\frac{dI}{I*(1000-I)}=\int a*dt\\\\-\frac{ln(1000/I-1)}{1000}+C=a*t

At the initial breakout (t=0) there was one trooper infected (I=1)

-\frac{ln(1000/1-1)}{1000}+C=0\\\\-0,006906755+C=0\\\\C=0,006906755

In two days (t=2) there were 5 troopers infected

-\frac{ln(1000/5-1)}{1000}+0,006906755=a*2\\\\-0,005293305+0,006906755=2*a\\a = 0,00161345 / 2 = 0,000806725

Rearranging, we can model the number of infected troops (I) as

-\frac{ln(1000/I-1)}{1000}+0,006906755=0,000806725*t\\\\-\frac{ln(1000/I-1)}{1000}=0,000806725*t-0,006906755\\-ln(1000/I-1)=0,806725*t-0.6906755\\\\\frac{1000}{I}-1=exp^{0,806725*t-0.6906755}  \\\\\frac{1000}{I}=exp^{0,806725*t-0.6906755}+1\\\\I=\frac{1000}{exp^{0,806725*t-0.6906755}+1}

6 0
3 years ago
49x^2=-21x-2 quadratic functions
lara [203]

Answer: 49x^2=-21x-2 quadratic functions -1/7and -2/7    



Step-by-step explanation:

Quadratic function:

In elementary algebra, the quadratic formula is a formula that provides the solution to a quadratic equation. There are other ways of solving a quadratic equation instead of using the quadratic formula, such as factoring, completing the square, graphing and others.

Move terms to the left side

49x^{2}  =-21x-2

49x^{2}  -(-21x-2) =0

 Distribute

49x^{2}  -(-21x-2) =0

49x^{2}+21x+2=0

Use the quadratic formula



 x=(-b±√b^{2}  -4ac  ) / 2a

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.

 49x^{2}+21x+2=0

let, a=49

b=21

c=2

 Replace with values in this equation

X=(-b±√b^{2}  -4ac  ) / 2a

Simplify

Evaluate the exponent

Multiply the numbers

Subtract the numbers

Evaluate the square root

Multiply the numbers

x=(-21±7) /98

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.Separate

x=(-21+7) /98

x=(-21-7) /98

Solve

Rearrange and isolate the variable to find each solution

x=-1/7

x=-2/7



                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Learn more about area here https://brainly.in/question/5597925

#SPJ9

                 

   



   


                                                                                                                                                                                                   







3 0
1 year ago
Dolores and four friends went to a buffet dinner. The total costs was at most 130 dollars including the 20 dollar tip. How much
lyudmila [28]
130÷5=26 20÷5=4+26=30 each payed 30 dollars for the buffet
6 0
3 years ago
Other questions:
  • What is the equation of the line in slope-intercept
    6·1 answer
  • √64/169 Evaluate.       IDK 
    11·1 answer
  • Geometry help! Can u show the steps please
    10·1 answer
  • Simplify the expression.
    15·1 answer
  • Im giving brainlyest to first CORECT answer and 30points QUICKKKKKK
    8·1 answer
  • I did some of it already I just need help on the last one unless I got the others wrong
    10·2 answers
  • X: -3, 2, 7, 12<br> Y: 0, 2, 4, 6<br> Whats the slope ?
    14·1 answer
  • Help please question in the picture
    13·1 answer
  • Find the value of x.
    11·1 answer
  • PLSSS HELP IF YOU TURLY KNOW THISS
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!