Answer:
Can you please describe the problem more detailed pls?
The first step to solving this expression is to factor out the perfect cube
![\sqrt[3]{m^{2} n^{3} X n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bm%5E%7B2%7D%20%20n%5E%7B3%7D%20X%20n%5E%7B2%7D%20%20%20%7D%20)
The root of a product is equal to the product of the roots of each factor. This will make the expression look like the following:
![\sqrt[3]{ m^{2} n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20m%5E%7B2%7D%20n%5E%7B2%7D%20%20%7D%20)
Finally,, reduce the index of the radical and exponent with 3
n
![\sqrt[3]{ m^{2} n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20m%5E%7B2%7D%20n%5E%7B2%7D%20%20%7D%20)
This means that the correct answer to your question is n
![\sqrt[3]{ m^{2} n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20m%5E%7B2%7D%20n%5E%7B2%7D%20%7D%20)
.
Let me know if you have any further questions
:)
Hey there!
2ab + 2 / 2ab - 2
= 2(1)(3) + 2 / 2(1)(3) - 2
= 2(3) + 2 / 2(3) - 2
= 6 + 2 / 6 - 2
= 8 / 4
= 2
Therefore, your answer should be: 2
Good luck on your assignment & enjoy your day!
~Amphitrite1040:)
Answer:
2x^4-11x^3+68x-80
2x^4-4x^3-7x^3+14x^2-14x^2+28x+40x-80
2x^3(x-2)-7x^2(x-2)-14x(x-2)+40(x-2)
(x-2)(2x^3-7x^2-14x+40)
(x-2)(2x^3-4x^2-3x^2+6x-20x+40)
(x-2)(2x^2(x-2)-3x(x-2)-20(x-2))
(x-2)(x-2)(2x^3-3x-20)
(x-2)(x-2)(2x^2+5x-8x-20)
(x-2)(x-2)(x(2x+5)-4(2x+5))
(x-2)(x-2)(2x+5)(x-4)
(x-2)^2(2x+5)(x-4)
Hello there!
Your answer would be
CAT (top line) = DBU (bottom line)
CAT (bottom line) = BZS (top line)
Hope I helped!
Let me know if you need anything else!
~ Zoe