Answer:

Domain: All Real Numbers
General Formulas and Concepts:
<u>Algebra I</u>
- Domain is the set of x-values that can be inputted into function f(x)
<u>Calculus</u>
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Derivative: ![\frac{d}{dx} [ln(u)] = \frac{u'}{u}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bln%28u%29%5D%20%3D%20%5Cfrac%7Bu%27%7D%7Bu%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = ln(2x² + 1)
<u>Step 2: Differentiate</u>
- Derivative ln(u) [Chain Rule/Basic Power]:

- Simplify:

- Multiply:

<u>Step 3: Domain</u>
We know that we would have issues in the denominator when we have a rational expression. However, we can see that the denominator would never equal 0.
Therefore, our domain would be all real numbers.
We can also graph the differential function to analyze the domain.
Answer:
-3f+101
Step-by-step explanation:
Using the t-distribution, it is found that the p-value of the test is 0.007.
At the null hypothesis, it is <u>tested if the mean lifetime is not greater than 220,000 miles</u>, that is:

At the alternative hypothesis, it is <u>tested if the mean lifetime is greater than 220,000 miles</u>, that is:
.
We have the <u>standard deviation for the sample</u>, thus, the t-distribution is used. The test statistic is given by:
The parameters are:
is the sample mean.
is the value tested at the null hypothesis.
- s is the standard deviation of the sample.
- n is the sample size.
For this problem:

Then, the value of the test statistic is:



We have a right-tailed test(test if the mean is greater than a value), with <u>t = 2.69</u> and 23 - 1 = <u>22 df.</u>
Using a t-distribution calculator, the p-value of the test is of 0.007.
A similar problem is given at brainly.com/question/13873630
12 is the correct answer. When you have problems like this just add over the equal sign. So 5 plus 6 plus 1 is 12. 12 minus 6 minus 1 is 5!