It is known as structurlism
The correct answer is: In both systems, ATP is produced by chemiosmosis.
Both of the processes, photosynthesis and electron transport chain in mitochondria use chemiosmosis (movement of ions across a semipermeable membrane, down their electrochemical gradient) to produce energy or ATP (via ATP synthase). The movement of hydrogen ions across the thylakoid membrane in order to galvanize the production of ATP is equal to the movement of those ions across the inner mitochondria membrane. Electrons are accepted by NADPH in photosynthesis (but not FADH2 as in mitochondria).
Answer:
Embedded in the lipid bilayer are large proteins, many of which transport ions and water-soluble molecules across the membrane. Some proteins in the plasma membrane form open pores, called membrane channels, which allow the free diffusion of ions into and out of the cell.
Answer:
There was no receptor for epinephrine to associate with and invigorate the sign transduction course that prompts the actuation of the compound
By and large, Earl Sutherland helped in translating and discovering the breakdown of the glycogen into glucose-1-phosphate in nearness of glycogen phosphorylase and this sign course pathway is activated by the epinephrine. The epinephrine doesn't have the correct receptor to discover and start the sign transduction process and thus glucose-1-phoshate isn't shaped. It requires CAMP which is again a second delivery person for starting the entire of the transduction procedure.