1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
3 years ago
14

Consider the two data sets below:

Mathematics
1 answer:
alina1380 [7]3 years ago
5 0

Answer:

<u><em>Option c) The data sets will have the same values of their interquartile range.</em></u>

<u><em></em></u>

Explanation:

<u>1. The values are in order: </u>they are in increasing oder, from lowest to highest value.

<u>2. Calculate the interquartile range.</u>

<em />

<em>Interquartile range</em>, IQR, is the third quartile, Q3, less the first quartile Q1:

  • IQR = Q3 - Q1

To find the first and the third quartile, first find the median:

<u>Data Set 1</u>: 19, 25, 35, 38, 41, 49, 50, 52, 59

             [19, 25, 35, 38],  41,  [49, 50, 52, 59]

                                         ↑

                                     median = 41

   

<u>Data Set 2</u>: 19, 25, 35, 38, 41, 49, 50, 52, 99

             [19, 25, 35, 38] , 41,  [49, 50, 52, 99]

                                         ↑

                                      median = 41

Now find the median of each subset: the values below the median and the values above the median.

Data set 1: <u>First quartile</u>

                [19, 25, 35, 38],

                            ↑

                           Q1 = [25 + 35] / 2 = 30

                   <u>Third quartile</u>

                   [49, 50, 52, 59]

                                ↑

                                Q3 = [50 + 52] / 2 = 51

                     IQR = Q3 - Q1 = 51 - 30 = 21

Data set 2: <u> First quartile</u>

                   [19, 25, 35, 38]

                               ↑

                               Q1 = [25 + 35] / 2= 30

                  <u>Third quartile</u>

                   [49, 50, 52, 99]

                                ↑

                                Q3 = [52 + 50]/2 = 51

                   IQR = 51 - 30 = 21

Thus, it is shown that the data sets have will have the same values for the interquartile range: IQR = 21. (option c)

This happens because replacing one extreme value (in this case the maximum value) by other extreme value does not affect the median.

<em>An outlier will change the range</em> because the range is the maximum value less the minimum value.

You might be interested in
Compute the amount of interest earned in the following simple interest problem. A deposit of $8,000 at 9.5% for 120 days.
elena-14-01-66 [18.8K]
Hi there

I=prt
P principle 8000
R interest rate 0.095
T time 120/360
I interest earned?

I=8,000×0.095×(120÷360)
I=253.33

Hope it helps
6 0
3 years ago
Read 2 more answers
What is the approximate surface area of a sphere with a circumference of 37.68
sergij07 [2.7K]
We must find the radius so we can plug this into the formula for surface area. 

Circumference = 2 \pi r
37.68 = 2 \pi r \\ r = 37.68/2 \pi

We are going to plug this in as our radius for the most accurate answer. 

The surface area of a sphere is 4 \pi  r^{2}

Surface Area = 4 \pi  ( \frac{37.68}{2 \pi }) ^{2} ≈ 451.93 units
6 0
3 years ago
2^3 times 2^3+= <br> what does this eqaul
VLD [36.1K]

Answer:

36

Step-by-step explanation:

2x3 x 2x3 = 36

Sorry if this didnt help

3 0
3 years ago
Read 2 more answers
Please help me ASAP
stellarik [79]

Answer:

<em>The Graph is shown below</em>

Step-by-step explanation:

<u>The Graph of a Function</u>

Given the function:

\displaystyle y=g(x)=-\frac{3}{2}(x-2)^2

It's required to plot the graph of g(x). Let's give x some values:

x={-2,0,2,4,6}

And calculate the values of y:

\displaystyle y=g(-2)=-\frac{3}{2}(-2-2)^2=-\frac{3}{2}(-4)^2==-\frac{3}{2}*16=-24

Point (-2,-24)

\displaystyle y=g(0)=-\frac{3}{2}(0-2)^2=-\frac{3}{2}(-2)^2=-\frac{3}{2}*4=-6

Point (0,-6)

\displaystyle y=g(2)=-\frac{3}{2}(2-2)^2=-\frac{3}{2}(0)^2=0

Point (2,0)

\displaystyle y=g(4)=-\frac{3}{2}(4-2)^2=-\frac{3}{2}(2)^2=-\frac{3}{2}*4=-6

Point (4,-6)

\displaystyle y=g(6)=-\frac{3}{2}(6-2)^2=-\frac{3}{2}(4)^2=-\frac{3}{2}*16=-24

Point (6,-24)

The graph is shown in the image below

8 0
2 years ago
What is the value of the expression (2)^6?
Mumz [18]
The value of the expression (2)^6 is 64.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Write the standard equation for the ellipse with the given conic form.
    12·1 answer
  • Which of the following has a slope of –2 and a y-intercept of 4?
    6·1 answer
  • Please help!
    9·1 answer
  • Which property justifies his step in simplifying an expression?
    10·1 answer
  • (07.06) Which of the following graphs shows all the possible values for a number that is less than 7? Number line with closed ci
    15·2 answers
  • A=7.5<br> B=30<br> C=15 square of 2<br> D= 15
    6·1 answer
  • -X + 3= -2<br><br><br>What ís the solution to this equation?<br>​
    13·2 answers
  • Help fast please I going to fail
    12·1 answer
  • What is the percent of increase from 75 to 99?
    12·2 answers
  • If x=-2 then write the ordered pair that is a solution of 5x-3y=-25
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!