Answer:
K=24.17 x 10⁻² J s⁻¹c⁻¹m⁻¹
Explanation:
Rate of flow of heat through a material is given by the following expression

where Q is amount of heat flowing in time t through area A and a medium of thickness d having two faces at temperature difference δT . K is thermal conductivity of the medium .
Here Q = 3.34 x 10⁶/6 , t = 24 x 60 x 60 = 86400 s , A = .332 X .332 = .0110224 m² , δT = 104.7
Put these values here


K=24.17 x 10⁻² J s⁻¹c⁻¹m⁻¹
Answer:
Condensation
Explanation:
Increased pressure is called condensation or compressions because they are regions of high air pressure whilst rarefractions are low air pressure.
At high pressures, the two factors that cause deviation during ideal gas law calculation are the size of molecular and intermolecular force.
The high pressure causes the molecules to approach each other at a very close distance. In that case, if the intermolecular force of attraction is high, the molecules may undergo a state transition, which will result in a completely different outcome as predicted by Ideal gas law.
If the size of the molecule is more, that is for heavy gases like refrigerants, the ideal gas law deviates due to the fact that, with increase in pressure, the volume of gas can no longer be considered as negligible.
To know more about intermolecular force go here
brainly.com/question/9007693
#SPJ4
Answer:
0.44c
Explanation:
We know that
Time interval at speed (ts)= time interval at rest(tr) / gamma
where
gamma = √[1-(v/c)²]
ts = tr / gamma
tr/ts = gamma
But
Ss/Sr = gamma
Where
Sr = clock speed at rest, Ss at speed):
So
√[1-(v/c)²] = 2/5
1 - (v/c)² = 4/25
(v/c)²= 5/25
v/c = √5 / 5
v = 0.444c