Answer:
C. 0.25J
Explanation:
Energy stored in the magnetic field of the inductor is expressed as E = 1/2LI² where;
L is the inductance
I is the current flowing in the inductor
Given parameters
L = 20mH = 20×10^-3H
I = 5A
Required
Energy stored in the magnetic field.
E = 1/2 × 20×10^-3 × 5²
E = 1/2 × 20×10^-3 × 25
E = 10×10^-3 × 25
E = 0.01 × 25
E = 0.25Joules.
Hence the energy stored in the magnetic field of this inductor is 0.25Joules
Answer: It represents the whole distance traveled. Hope this helps!
Explanation:
We need to charge a metal sphere positively without touching it. This can be achieved using electrostatic induction.
Answer:
ФE = 9.403W
Explanation:
In order to calculate the magnitude of the electric flux trough the sheet, you use the following formula:
(1)
A: area of the rectangular sheet = (0.400m)(0.600m) = 0.24m^2
E: magnitude of the electric field = 95.0N/C
θ: angle between the direction of the electric field and the normal to the surface of the sheet
You replace the values of the parameters in the equation (1):

The magnitude of the electric flux is trough the sheet is 9.403W