Answer:
23.49m
Explanation:
Distance = velocity x time
8.7 x 2.7 = 23.49m
Average Velocity = Total Displacement / Total time
1st part of journey, 350 km at velocity 125 km/h
Time = 350 / 125 = 2.8 hours.
2nd part of journey, 220 km at velocity 115 km/h
Time = 220 / 115 = 1.9 hours
Average Velocity = Total Displacement / Total time
= (350 + 220) / (2.8 + 1.9)
= 570 / 4.7 ≈ 121.3 km/hr
Average Velocity ≈ 121 km/hr due south.
Option C.
Answer:
FREE FREE FREE FREEE FREEEEEEEEEEE FREEEEEEEEEEEEEEEE FREEEEEEEEEEEEEEEEEE
Explanation:
FREE FREE FREE FREEE FREEEEEEEEEEE FREEEEEEEEEEEEEEEE FREEEEEEEEEEEEEEEEEE
Answer:
P = 180.81 J
Explanation:
Given that,
Mass of a object, m = 4.1 kg
It is lifted to a height of 4.5 m
We need to find the potential energy of the object due to gravity. It is given by the formula as follows :
P = mgh Where g is acceleration due to gravity
P = 4.1 kg × 9.8 m/s² × 4.5 m
P = 180.81 J
Hence, the potential energy is 180.81 J.
Answer:
A) ( - 200t + 40 ) volts
B) b) anticlockwise , c) anticlockwise , d) clockwise , e) clockwise
Explanation:
Given data:
magnetic flux (Φm) = 5.0t^2 − 2.0t
number of turns = 20
<u>a) determine induced emf </u>
E = - N 
= - N ( 10t - 2 ) = - 20 ( 10t - 2 )
= - 200t + 40 volts
<u>b) Determine direction of induced current </u>
i) at t = 0
E = - 0 + 40 ( anticlockwise direction )
ii) at t = 0.10
E = -20 + 40 = 20 ( anticlockwise direction )
iii) at t = 1
E = - 200 + 40 = - 160 ( clockwise direction)
iv) at t = 2
E = -400 + 40 = - 360 ( clockwise direction )