Answer:
As the wavelength of an electromagnetic wave _decrease__ the frequency of the wave _increase_______.
Explanation:
What is the relationship between frequency and wavelength?
Wavelength and frequency of light are closely related. The higher the frequency, the shorter the wavelength. Because all light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength.
That number, also known as the frequency, will be larger for a short-wavelength wave than for a long-wavelength wave. The equation that relates wavelength and frequency is:
V= fλ
where v= velocity
f= frequency
λ = wavelength
⇒ f = v/λ
also f ∝ 1/λ
For electromagnetic radiation, the speed is equal to the speed of light, c, and the equation becomes:
C= fλ
where c= Speed of light
f= frequency
λ = wavelength
⇒ f = v/λ
also f ∝ 1/λ
Answer:
No.
Explanation:
- According to Faraday's law, the induced emf in the circuit is given by :
, it is proportional to the rate of change of magnetic flux.
- In this case, a short piece of wire that is not attached to anything and move it up and down in a magnetic field. It means that the circuit is not completed here. It is an open circuit. For the induction of current, a circuit must be completed.
- Hence, no current will induce.
Answer:
North and east are at 90 degree, equation becomes
Explanation:
(2x 2)+[2(x+5)] 2=50 2
on solving, we get
x=12.366km/h
Answer:
a) 3.7 m/s^2
b) 231.8 N
Explanation:
Let m1 be mass of the first object (m1 = 38.0 kg) and let m2 be the mass of the second object (m2 = 17.0 kg ). Let a be the acceleration of the two objects. Let F1 be the force of gravity exerted on m1 and F2 be the force of gravity exerted on m2. Let M = m1 +m2
a)
F1 = m1g and F2 = m2g
So Fnet = F1 + F2
Since the pulleys will move in different directions when accelerating...
Fnet = F1 - F2
M×a = m1g - mg2
M×a = g×(m1 -m2)
a = g×(m1 - m2)/M
a = 9.8×(38 - 17)/(38 + 17)
a = 3.7 m/s^2
b)
Looking at the part for m2
Fnet = T - m2g
-m2×a = T - m2g
T = m2(g - a)
T = 231.8 N
Answer:
0.9Ns
Explanation:
Impulse formula is expressed as;
Impulse = Ft = m(v-u)
Impulse = m(v-u)
m is the mass of football = 0.45kg
v is the final velocity = 22m/s
u is the initial velocity = 0m/s
Impulse = 0.45(22-0)
Impulse = 0.45 * 22
Impulse = 0.9Ns
Hence the magnitude of the impulse imparted to the receiver by the ball is 0.9Ns