Answer:
K' = 1777.777 J
Explanation:
Given that
m = 40 kg
v= 15 m/s
K=1000
Given that kinetic energy(K) varies with mass(m) and velocity(v)
K= C(mv²)
Where
C= Constant
m=mass
v=velocity
When
m = 40 kg ,v= 15 m/s ,K=1000
K= C(mv²)
1000 = C( 40 x 15²)
C=0.111111
When m = 40 kg and v= 20 m/s
K' = C(mv²)
K= 0.1111 x (40 x 20²)
K' = 1777.777 J
<span>The person is dragging
with a force of 58 lbs at an angle of 27 degrees relating to the ground. We
want to use cosine function to look for the horizontal force component. And
then we can compute for W = (Horizontal Force) x (Distance). We want the
horizontal force component since that is the component that is parallel to the
direction the cart is moving. </span><span>
(cos 27 degrees)(58 lbs) = 51.69 lbs (This is the horizontal
force component.)
W = (51.69 lbs) x (70 ft) = 3618.3 ft*lbs</span>
False: the force of gravity acting on different objects is different and depends on their mass
Explanation:
The answer is false.
The force of gravity acting on an object (also known as weight) near the Earth's surface is given by:

where:
m is the mass of the object
is the acceleration of gravity
We see from the formula that the force of gravity acting on an object depends on the mass: the larger the mass of the object, the stronger the gravitational force acting on it, and the smaller the mass, the weaker the force of gravity.
The factor that does not change is the acceleration of gravity, which is constant (
) if we are near the Earth's surface, and implies that all the objects in free fall accelerate at the same rate towards the ground, regardless of their size and weight.
Learn more about forces and weight here:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Answer:
<em>The rubber band will be stretched 0.02 m.</em>
<em>The work done in stretching is 0.11 J.</em>
Explanation:
Force 1 = 44 N
extension of rubber band = 0.080 m
Force 2 = 11 N
extension = ?
According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.
F = ke
where k = constant of elasticity
e = extension of the material
F = force applied.
For the first case,
44 = 0.080K
K = 44/0.080 = 550 N/m
For the second situation involving the same rubber band
Force = 11 N
e = 550 N/m
11 = 550e
extension e = 11/550 = <em>0.02 m</em>
<em>The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch</em>. This is in line with energy conservation.
potential energy stored = 
==>
= <em>0.11 J</em>