The answer to this question is b
Answer:
One possible answer is:
f(x) = (2/x) + 3 and g(x) = x².
Step-by-step explanation:
Explanation:
We are to write this equation as y = f(g(x)). This means we want it to be a composite of functions; in f(x), we take the value of g(x) and use in place of x.
If we let g(x) = x², this means everywhere we see an x in f(x), we will replace it with x². To make our equation y = 2/x² + 3, working backward we would substitute x for x²; this would give us f(x) = 2/x + 3.
let's firstly convert the mixed fractions to improper fractions and then divide.
![\bf \stackrel{mixed}{1\frac{1}{4}}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}}~\hfill \stackrel{mixed}{3\frac{4}{5}}\implies \cfrac{3\cdot 5+4}{5}\implies \stackrel{improper}{\cfrac{19}{5}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{5}{4}\div\cfrac{19}{5}\implies \cfrac{5}{4}\cdot \cfrac{5}{19}\implies \cfrac{25}{76}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B4%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B4%7D%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%205%2B4%7D%7B5%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B19%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B5%7D%7B4%7D%5Cdiv%5Ccfrac%7B19%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B5%7D%7B4%7D%5Ccdot%20%5Ccfrac%7B5%7D%7B19%7D%5Cimplies%20%5Ccfrac%7B25%7D%7B76%7D)
can i just get a thank you ? lol