Answer: ∞
Step-by-step explanation: First, find the indefinite integral F (x), and then evaluate F (∞)–F(– ∞).
Answer:
Follows are the solution to the given point:
Step-by-step explanation:
In point a:
¬∃y∃xP (x, y)
∀x∀y(>P(x,y))
In point b:
¬∀x∃yP (x, y)
∃x∀y ¬P(x,y)
In point c:
¬∃y(Q(y) ∧ ∀x¬R(x, y))
∀y(> Q(y) V ∀ ¬ (¬R(x,y)))
∀y(¬Q(Y)) V ∃xR(x,y) )
In point d:
¬∃y(∃xR(x, y) ∨ ∀xS(x, y))
∀y(∀x>R(x,y))
∃x>s(x,y))
In point e:
¬∃y(∀x∃zT (x, y, z) ∨ ∃x∀zU (x, y, z))
∀y(∃x ∀z)>T(x,y,z)
∀x ∃z> V (x,y,z))
We have a point and a slope, so let's use the point slope formula!

where
x1=4
y1=2
and m=3
L = 2 W
B = L x W = 2 W²
Side Area = 2 W H + 2 L H = 2 H ( W + L ) = 6 H W
V = 2 W² H = 10
H = 5 / W²
Cost = 15 * 2 W² + 9 * 5/W
= 30 W² + 270/ W
C ` = 60 W - 270 / W²
= ( 60 W² - 270 ) / W² = 0
60 W² = 270
W ² = 270 : 60
W² = 4.5
W = √ 4.5 = 2.12
Cost (min) = 15 * 2 * 4.5 + 30 / 2.12 = 135 + 14.15 = $149.15
Answer: The cost of materials for the cheapest such container is $149.15.