A.) if 4oz is drank every 4 hours, and there are 24 hours in a day, then there are 6 times during each day that the baby drinks formula. Knowing this, multiply 6 and 4 to get 24oz of formula each day
b.) if 1 can = 91fl oz, and, let's say 30 days in a month, then 24 multiplied by 30 will gives us how much is drank each month which is equal to 720fl oz. Divide 720 by 91 to get approximately 8 cans for one month.
c.) Go back to sub-problem a to find that the new amount per day is now equal to 16oz (6oz/4hrs ... 24/6 = 4 ... 4*4 = 16). Now take 30 and multiply it by 16 to get 480fl oz. Divide 480 by 91 to get approximately 5 cans for one month.
Answer:
0
Step-by-step explanation:
If we use polar coordinates, the region D can be covered by replacing (x,y) by (r*sin(Θ),rcosΘ)), with 0<r<7, 0<Θ<2π. The differential matrix
![\left[\begin{array}{cc}rcos(\theta)&-rsin(\theta)\\sin(\theta)&cos(\theta)\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Drcos%28%5Ctheta%29%26-rsin%28%5Ctheta%29%5C%5Csin%28%5Ctheta%29%26cos%28%5Ctheta%29%5Cend%7Barray%7D%5Cright%5D)
has determinant equal to r, so we can compute the double integral as follows

(Note that we multiplied by the determinant of the Jacobian, r). A primitive for r³ is r⁴/4, thus, for Barrow's rule we have

A primitive of cos(Θ)sin(Θ) can be obtained using substitution, and it is sin²(Θ)/2 (note that the derivate of sin²(Θ) is 2sin(Θ)cos(Θ)). Therefore, taking both the dividing 4 and the 2 obtained, we have

Hence, the integral is 0.
Answer:
>-4
Step-by-step explanation:
The function is positive for all real values of x where x > –4. The function is negative for all real values of x where –6 –3. The function is negative for all real values of x where x < –2.
843=eight hundred forty three
208=two hundred eight
732=seven hundred thirty two
833=eight hundred thirty three