1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
neonofarm [45]
3 years ago
9

If the speed of a car is 20m/s .How long does it take to cover a distance of 1km?​

Physics
2 answers:
3241004551 [841]3 years ago
7 0

Answer: 50 seconds

Explanation:

1km=1000m

Distance/speed=time

1000/20=50

50 seconds

Neporo4naja [7]3 years ago
6 0

Explanation:

Hey, there!!

Here,

speed (s)= 20m/s

distance (d)= 1km

= 1000m

now,

we have formula,

t =  \frac{d}{s}

putting value,

t =  \frac{1000m}{20m/ s }

cancelling the like terms,

t = 50s

Therefore, the time is 50s.

<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

You might be interested in
Materials in which electric charges move freely such as copper and aluminum are called
yuradex [85]

Answer:

Conductors allow electric charges to move freely

8 0
4 years ago
Explains this: a light source can emit more than one type of light
Radda [10]

Answer:

The electromagnetic spectrum comprise a lot of waves length. Usually, different waves length are called as different lights, and a light source can emit in more than a different wave length, as the sun does, for example. The sun emit the visible light, UV light, infrared, etc.

6 0
3 years ago
NASA has asked your team of rocket scientists about the feasibility of a new satellite launcher that will save rocket fuel. NASA
kkurt [141]

Answer:

The answer is "q=0.0945\,C".

Explanation:

Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

U_i=\frac{1}{4\pi\epsilon_0} \times \frac{4\times4q^2}{\sqrt{(15)^2+(5/\sqrt2)^2}}

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

U_f=\frac{1}{4\pi\epsilon_0}\ \times \frac{4\times4q^2}{( \frac{5}{\sqrt{2}})}

Potential energy shifts:

= U_f -U_i \\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{\sqrt{(15)^2+( \frac{5}{\sqrt{2})^2)}}\right ) \\\\   =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ 15 +( \frac{5}{2})}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{30+5}{2})}}\right )\\\\

=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{35}{2})}}\right )\\\\=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{17.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 24.74- 5 }{87.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 19.74- 5 }{87.5}}\right )\\\\ =\frac{4q^2}{\pi\epsilon_0}\left ( 0.2256 }\right )\\\\= \frac{0.28 \times q^2}{ \epsilon_0}\\\\=q^2\times31.35 \times10^9\,J

Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.

=\frac{GMm}{R}-\frac{GMm}{R+h} \\\\=(6.67\times10^{-11}\times6.0\times10^{24}\times100)\left(\frac{1}{6400\times1000}-\frac{1}{6700\times1000} \right ) \\\\ =(6.67\times10^{-11}\times6.0\times10^{26})\left(\frac{1}{64\times10^{5}}-\frac{1}{67\times10^{5}} \right ) \\\\=(6.67\times6.0\times10^{15})\left(\frac{67 \times 10^{5} - 64 \times 10^{5}  }{ 4,228 \times10^{5}} \right ) \\\\

=( 40.02\times10^{15})\left(\frac{3 \times 10^{5}}{ 4,228 \times10^{5}} \right ) \\\\ =40.02 \times10^{15} \times 0.0007 \\\\

\\\\ =0.02799\times10^{10}\,J \\\\= q^2\times31.35\times10^{9} \\\\ =0.02799\times10^{10} \\\\q=0.0945\,C

This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.

6 0
3 years ago
skater spins over a point at a speed of 3.0 rotations per second then the momentum of inertia is 0.60 kg.M2, what is its angular
laiz [17]

Answer:

L=11.3\ kg-m^2/s

Explanation:

Given that,

Angular speed of a skater, \omega=3\ rot/s=18.84\ rad/s

The moment of inertia of the skater, I = 0.6 kg-m²

We need to find the angular momentum of the skater. The formula for the angular momentum of the skater is given by :

L=I\omega

Substitute all the values,

L=0.6\times 18.84\\\\L=11.3\ kg-m^2/s

So, its angular momentum is equal to 11.3\ kg-m^2/s.

8 0
3 years ago
The 1.53-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in
OlgaM077 [116]

Answer:

The spring constant = 104.82 N/m

The angular velocity of the bar when θ = 32° is 1.70 rad/s

Explanation:

From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:

T_1+V_1=T_2+V_2

0+0 = \frac{1}{2} k \delta^2 - \frac{mg (a+b) sin \ \theta }{2}  \\ \\ k \delta^2 = mg (a+b) sin \ \theta \\ \\ k = \frac{mg(a+b) sin \ \theta }{\delta^2}

Also;

\delta = \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2}

Thus;

k = \frac{mg(a+b) sin \ \theta }{( \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2})^2}

where;

\delta = deflection in the spring

k = spring constant

b = remaining length in the rod

m = mass of the slender bar

g = acceleration due to gravity

k = \frac{(1.53*9.8)(0.6+0.2) sin \ 64 }{( \sqrt{0.6^2 +0.6^2 +2*0.6*0.6 sin \ 64} - \sqrt{0.6^2 +0.6^2})^2}

k = 104.82\ \  N/m

Thus; the spring constant = 104.82 N/m

b

The angular velocity can be calculated by also using the conservation of energy;

T_1+V_1 = T_3 +V_3  \\ \\ 0+0 = \frac{1}{2}I_o \omega_3^2+\frac{1}{2}k \delta^2 - \frac{mg(a+b)sin \theta }{2} \\ \\ \frac{1}{2} \frac{m(a+b)^2}{3}  \omega_3^2 +  \frac{1}{2} k \delta^2 - \frac{mg(a+b)sin \ \theta }{2} =0

\frac{m(a+b)^2}{3} \omega_3^2  + k(\sqrt{h^2+a^2+2ah sin \theta } - \sqrt{h^2+a^2})^2 - mg(a+b)sin \theta = 0

\frac{1.53(0.6+0.6)^2}{3} \omega_3^2  + 104.82(\sqrt{0.6^2+0.6^2+2(0.6*0.6) sin 32 } - \sqrt{0.6^2+0.6^2})^2 - (1.53*9.81)(0.6+0.2)sin \ 32 = 0

0.7344 \omega_3^2 = 2.128

\omega _3 = \sqrt{\frac{2.128}{0.7344} }

\omega _3 =1.70 \ rad/s

Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s

7 0
3 years ago
Other questions:
  • A gas sample occupies 4.2 L at a pressure of 101 kPa. What volume will it occupy if the pressure is increased to 235 kPa?
    7·2 answers
  • Is this correct? (the table)
    12·1 answer
  • An extension cord is used with an electric weed trimmer that has a resistance of 17.9 Ω. The extension cord is made of copper (r
    6·1 answer
  • Magnetism, reactivity, and fluorescence are three special properties used to identify minerals. Please select the best answer fr
    12·2 answers
  • A toy car moves 8 m in 4 s at the constant velocity. whats the car's velocity?
    13·2 answers
  • What is electric charge ?​
    9·2 answers
  • An object with a mass of 2.0 kg accelerates 2.0 m/s2 when an unknown force is applied to it. What is the amount of the force?​
    8·2 answers
  • How dose nail polish burnt in water?
    7·1 answer
  • 10. What do you think the effect is of jet airplanes on global warming?
    8·1 answer
  • if your oven uses a 220.0 volt line and draws a maximum 8.00 A current what is the resistance of the oven when it is fully heate
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!