1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hitman42 [59]
3 years ago
9

a rock is dropped from a height of 80 m and is in free fall what is the velocity of as it reaches the ground 4.0 seconds later

Physics
1 answer:
Marta_Voda [28]3 years ago
8 0
Velocity = displacement (distance)/time

v=80m/4s

v=20m/s

velocity = 20 meters per second
You might be interested in
Show that rigid body rotation near the Galactic center is consistent with a spherically symmetric mass distribution of constant
irakobra [83]

To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

a_g = \frac{GM}{R^2}

Here

M = \text{Mass inside the Orbit of the star}

R = \text{Orbital radius}

G = \text{Universal Gravitational Constant}

Mass inside the orbit in terms of Volume and Density is

M =V \rho

Where,

V = Volume

\rho =Density

Now considering the volume of the star as a Sphere we have

V = \frac{4}{3} \pi R^3

Replacing at the previous equation we have,

M = (\frac{4}{3}\pi R^3)\rho

Now replacing the mass at the gravitational acceleration formula we have that

a_g = \frac{G}{R^2}(\frac{4}{3}\pi R^3)\rho

a_g = \frac{4}{3} G\pi R\rho

For a rotating star, the centripetal acceleration is caused by this gravitational acceleration.  So centripetal acceleration of the star is

a_c = \frac{4}{3} G\pi R\rho

At the same time the general expression for the centripetal acceleration is

a_c = \frac{\Theta^2}{R}

Where \Theta is the orbital velocity

Using this expression in the left hand side of the equation we have that

\frac{\Theta^2}{R} = \frac{4}{3}G\pi \rho R^2

\Theta = (\frac{4}{3}G\pi \rho R^2)^{1/2}

\Theta = (\frac{4}{3}G\pi \rho)^{1/2}R

Considering the constant values we have that

\Theta = \text{Constant} \times R

\Theta \propto R

As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.

So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density

6 0
3 years ago
A 4.00 m long, massless beam rests horizontally on a support 3.00 m from the left
Rus_ich [418]

If the beam is in static equilibrium, meaning the Net Torque on it about the support is zero, the value of x₁ is 2.46m

Given the data in the question;

  • Length of the massless beam;L = 4.00m
  • Distance of support from the left end; x = 3.00m
  • First mass; m1 = 31.3 kg
  • Distance of beam from  the left end( m₁ is attached to ); x_1 = ?
  • Second mass; m_2 = 61.7 kg
  • Distance of beam from  the right of the support( m₂ is attached to ); x_1 = 0.273m

Now, since it is mentioned that the beam is in static equilibrium, the Net Torque on it about the support must be zero.

Hence, m_1g( x-x_1) = m_2gx_2

we divide both sides by g

m_1( x-x_1) = m_2x_2

Next, we make x_1, the subject of the formula

x_1 = x - [ \frac{m_2x_2}{m_1} ]

We substitute in our given values

x_1 = 3.00m - [ \frac{61.7kg\ * \ 0.273m}{31.3kg} ]

x_1 = 3.00m - 0.538m

x_1 = 2.46m

Therefore, If the beam is in static equilibrium, meaning the Net Torque on it about the support is zero, the value of x₁ is 2.46m

Learn more; brainly.com/question/3882839

6 0
3 years ago
If the potential difference across the bulb in a camping lantern is 9.0 V, what is the
Gre4nikov [31]

Answer:

9V

Explanation:

The potential difference across the terminal as the same and thats because we are assuming that the source has no internal resistance.

Internal resistance are usually little resistances in the supply.

4 0
2 years ago
Which cells in the immune system identify pathogens and distinguish one pathogen from another?
FinnZ [79.3K]

Answer:

T cell

Explanation:

7 0
2 years ago
Read 2 more answers
A ball is rolled uphill a distance of 12 meters before it slows, stops, and begins to roll back. The ball rolls downhill 20 mete
Sedaia [141]
The ball rolled a distance of
d = 12m + 20m.
But the change of position is
x = + 12m - 20m
5 0
3 years ago
Other questions:
  • Jumps at 8 m/s at a 30 degree angle above the horizontal. how long was she in the air?
    12·1 answer
  • A block spring system oscillates on a frictionless surface with an amplitude of 10\text{ cm}10 cm and has an energy of 2.5 \text
    5·1 answer
  • What type of force was applied to these rocks to form folds?
    8·1 answer
  • Water is boiled at sea level in a coffeemaker equipped with an immersion-type electric heating element. The coffee maker contain
    10·1 answer
  • When light with a wavelength of 209 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic ener
    10·1 answer
  • What do biologists, geologists, and physicists have in common, how are they differnet
    10·2 answers
  • A homodimeric protein was found to migrate through SDS polyacrilamide gel electrophoresis (SDS-PAGE) with a mobility that matche
    12·1 answer
  • An object is moving north with an initial velocity of 14 m/s accelerates 5m/s for 20 seconds. What is the final velocity of the
    15·1 answer
  • A flat coil of wire is placed in a uniform magnetic field that is in the y-direction.
    11·1 answer
  • What are used to measure temperature.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!