You multiply the 3 values. I would first multiply 1/2 x 12, which = 6, then multiply 6 x 35, which = 210
We are given a trapezoid TRHY.
Height of the trapezoid = 13 units.
b1 = 21 units and
Area = 215 units squares.
We need to find the length of b2.
We know formula for area of a trapezoid.

Plugging values in formula.
215 =
(21+b2)× 13.
215 = 6.5(21+b2)
Dividing both sides by 6.5, we get

33.08 = 21+b2.
Subtracting 21 from both sides, we get
33.08-21 = 21-21+b2
b2 = 12.08.
<h3>Therefore, length of b2 is 12.08 units.</h3>
547.9 is the answer to this
Answer:
See below ~
Step-by-step explanation:
Given :
<u>QRSTU ~ FGCDE</u>
Finding the scale factor :
- Take two corresponding sides in proportion
- RS : GC
- 40 : 12
- <u>10 : 3</u>
Applying the scale factor to find the missing sides :
- FG :
- QR : FG = 10 : 3
- 30/FG = 10/3
- FG = 30/10 x 3
- FG = 3 x 3
- <u>FG = 9</u>
- CD :
- ST : CD = 10 : 3
- 40/CD = 10/3
- CD = 40/10 x 3
- CD = 4 x 3
- <u>CD = 12</u>
- EF :
- UQ : EF = 10 : 3
- 30/EF = 10/3
- EF = 30/10 x 3
- EF = 3 x 3
- <u>EF = 9</u>
Solution:
- (x² + x – 12)(x² + 10x + 25)
- => (x⁴ + 10x³ + 25x²) + (x³ + 10x² + 25x) + (-12x² - 120x - 300)
- => x⁴ + 10x³ + 25x² + x³ + 10x² + 25x - 12x² - 120x - 300
- => x⁴ + (10x³ + x³) + (25x² + 10x² - 12x²) + (25x - 120x) - 300
- => x⁴ + (11x³) + (23x²) + (-95x) - 300
- => x⁴ + 11x³ + 23x² - 95x - 300
The only term that has a x-variable is "-95x".
The coefficient of x is -95.