<h3><u>Answer;</u></h3>
Empirical formula = C₂H₃O
Molecular formula = C₁₄H₂₁O₇
<h3><u>Explanation</u>;</h3>
Empirical formula
Moles of;
Carbon = 55.8 /12 = 4.65 moles
Hydrogen = 7.04/ 1 = 7.04 moles
Oxygen = 37.16/ 16 = 2.3225 moles
We then get the mole ratio;
4.65/2.3225 = 2.0
7.04/2.3225 = 3.0
2.3225/2.3225 = 1.0
Therefore;
The empirical formula = <u>C₂H₃O</u>
Molecular formula;
(C2H3O)n = 301.35 g
(12 ×2 + 3× 1 + 16×1)n = 301.35
43n = 301.35
n = 7
Therefore;
Molecular formula = (C2H3O)7
<u> = C₁₄H₂₁O₇</u>
Answer:
Diffusion in gases
Diffusion is driven by differences in concentration. When chemical substances such as perfume are let loose in a room, their particles mix with the particles of air. The particles of smelly gas are free to move quickly in all directions
Explanation:
hope this helps
Answer:Cell reaction is going forward.
Explanation:
For any chemical reaction to be spontaneous or to move in forward direction the ΔG ,the Gibbs free energy must be negative.
The cell potential of a battery is positive for a spontaneous reaction, so for a battery to give output its cell potential must be positive.
Thermodynamics and electro-chemistry are related in the following manner:
ΔG=-nFE
n=number of electrons involved
F=Faradays constant
E=cell pottential of battery
so from the above equation ΔG would only be negative when E cell that is the cell potential is positive.
For a battery which is being used its cell potential is positive and hence the ΔG would be negative. So the cell reaction occurring would be in forward direction as ΔG is negative.
when the cell potential Ecell is 0 then ΔG is also zero then the reaction occurring in battery would be at equilibrium.
When the cell potential Ecell is - then ΔG is positive and the reaction would be occurring backwards.
Answer:
A substance that produces hydrogen gas when dissolved
K₂CrO₄(aq) + Ba(NO₃)₂(aq) = BaCrO₄(s) + 2KNO₃(aq)
2K⁺ + CrO₄²⁻ + Ba²⁺ + 2NO₃⁻ = BaCrO₄ + 2K⁺ + 2NO₃⁻
spectator ions: K⁺, NO₃⁻