Hi there!
Recall the equation for electric potential of a point charge:

V = Electric potential (V)
k = Coulomb's Constant(Nm²/C²)
Q = Charge (C)
r = distance (m)
We can begin by solving for the given electric potentials. Remember, charge must be accounted for. Electric potential is also a SCALAR quantity.
Upper right charge's potential:

Lower left charge's potential:

Add the two, and subtract from the total EP at the point:

The remaining charge must have a potential of 2036.25 V, so:

the frequency (in hz) of these vibrations if the car moves at 24.2 m/s is 605 HZ .
Calculation :
frequency = 
frequency = 
= 605 HZ
Frequency describes the number of waves passing through a particular location in a particular time. So if the wave takes 1/2 second to travel, the frequency is 2 per second. If it takes 1/100th of an hour, the frequency is 100 per hour.
Frequency is the number of occurrences of a repeating event per unit time. ... sometimes called time-frequency for clarity,
Learn more about frequency here : brainly.com/question/254161
#SPJ4
Answer:
The direction of the magnetic field at point Z; Into the screen
Explanation:
So the acceleration of gravity is 9.8 m/s so that’s how quickly it will accelerate downwards. You can use a kinematic equation to determine your answer. We know that initial velocity was 19 m/s, final velocity must be 0 m/s because it’s at the very top, and the acceleration is -9.8 m/s. You can then use this equation:
Vf^2=Vo^2+2ax
Plugging in values:
361=19.6x
X=18 m
A small boy is playing with a ball on a stationary train. If he places the ball on the floor of the train, when the train starts moving the ball moves toward the back of the train. This happened due to inertia
An object at rest remains at rest, or if in motion, remains in motion unless a net external force acts on it .
When a train starts moving forward, the ball placed on the floor tends to fall backward is an example of inertia of rest. Due to the reason that the lower part of the ball is in contact with the surface and rest of the part is not . As the train starts moving, its lower part gets the motion as the floor starts moving but the upper part will remain as it is as it is not in contact with the floor , hence do not attain any motion due to the inertia of rest simultaneously i.e. it tends to remain at the same place.
To learn more about inertia here :
brainly.com/question/11049261
#SPJ1