1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxx [7]
2 years ago
7

Three rocks with masses of 1 kg, 5 kg, and 10 kg fall from the same height.

Physics
2 answers:
Naily [24]2 years ago
4 0
Answer:
The 10 kg rock has more inertia than the other two rocks.


Explanation
Romashka-Z-Leto [24]2 years ago
4 0
The 10 kg should be right, have a good day :)
You might be interested in
Which of the following would illustrate a quadratic relation between the dependent and independent variables when graphed?
Kitty [74]

Answer: option A. a graph of the area of a circle vs. its radius r (A = πr²).



Explanation:



A quadratic relation between the dependent and independent variables shows the independent variable raised to the power of 2.



This is it is a polynomial with general form ax² + bx + c, whewre a, b, and c, named coeficients,  are constants.



The function is y =  ax² + bx + c, where x is the independent variable and y is the dependent variable.



As stated in the question, the area of a circle is given by A = πr².



In this case, A is the dependent variable and r is the independent variable.



π is assumed as the coefficient of the quadratic term, and the other coefficients are assumed 0, since there are no either terms on r or constants.



The equation a = 1/b  is an inverse relation, not a quadratic relation.



The relation of distance vs. time for a car moving at constant speed is a linear relation of the kind v = u + st.



The mass of water vs. the volume of water in a drinking glass is a direct relation, mass = density × volume



Therefore, the only quadratic relation is shown by  a graph of the area of a circle vs. its radius r.

3 0
2 years ago
The fastest pitched baseball was clocked at 46 m/s. assume that the pitcher exerted his force (assumed to be horizontal and cons
Zielflug [23.3K]
Using the Equation:
                                 v² = vi² + 2 · a · s    → Eq.1
where,
v = final velocity 
vi = initial velocity 
a = acceleration 
s = distance 

<span><span>We know that vi = 0 because the ball was at rest initially.
</span><span>
Therefore,

Solving Eq.1 for acceleration,
 
</span></span> v² = vi² + 2 · a · s
 v² = 0 + 2 · a · s
 v² = 2 · a · s
Rearranging for a,
a = v ²/2·<span>s
Substituting the values,
a = 46</span>²/2×1<span> 
a = 1058 m/s</span>² 

<span>Now applying Newton's 2nd law of motion,
 </span>
<span>F = ma
   = 0.145</span>×<span>1058

F = 153.4 N</span>
8 0
3 years ago
At the county fair, Chris throws a 0.12kg baseball at a 2.4kg wooden milk bottle, hoping to knock it off its stand and win a pri
viva [34]

Answer:

v_{f2} =6.5%v_{i1}

Explanation:

Mass of the ball: m_{1} =0.12kg]

Initial velocity of the ball:   v_{i1}

final velocity of the ball: v_{f1} which is -30/100 of v_{i1} =-0.3v_{i1}

Mass of the bottle: m_{2} =2.4kg

Initial velocity of the bottle: v_{i2}=0m/s

final velocity of the bottle: v_{f2} is unknown (to find)

<em>by using conservation momentum, which stated that the initial momentum is equal to the final momentum.</em>

<em />m_{1} v_{i1} +m_{2} v_{i2} =m_{1} v_{f1} +m_{2} v_{f2}<em />

<em>so since the bottle is at rest firstly, therefore </em>v_{i2} =0<em />

<em />m_{1} v_{i1} +m_{2} (0) =m_{1} v_{f1} +m_{2} v_{f2}<em />

<em />m_{1} v_{i1}  =m_{1} v_{f1} +m_{2} v_{f2}<em>         </em><em>equation 1</em>

so now substitute v_{f1} into equation 1

m_{1} v_{i1}  =m_{1} (-0.3v_{i1} ) +m_{2} v_{f2}

<em />m_{1} v_{i1}  = -0.3m_{1}v_{i1}  +m_{2} v_{f2}<em />

<em>collect the like terms</em>

m_{1} v_{i1}   +0.3m_{1}v_{i1}  =m_{2} v_{f2}

1.3m_{1} v_{i1}   =m_{2} v_{f2}

divide both  side by m_{2}

v_{f2}=\frac{1.3m_{1} v_{i1}}{m_{2} }

Now substitute

v_{f2} =\frac{1.3*0.12*v_{i1}}{2.4}\\v_{f2}    =\frac{0.156v_{i1} }{2.4} \\v_{f2} =0.065v_{i1}

v_{f2} =6.5%v_{i1}

<em />

6 0
3 years ago
Read 2 more answers
A string is tied between two posts separated by 2.4 m. When the string is driven by an oscillator at frequency 567 Hz, 5 points
Alex787 [66]

Explanation:

The given data is as follows.

       Length (l) = 2.4 m

       Frequency (f) = 567 Hz

Formula to calculate the speed of a transverse wave is as follows.

                  f = \frac{5}{2l} \times v

Putting the gicven values into the above formula as follows.

                  f = \frac{5}{2l} \times v

                 567 Hz = \frac{5}{2 \times 2.4 m} \times v

                      v = 544.32 m/s

Thus, we can conclude that the speed (in m/s) of a transverse wave on this string is 544.32 m/s.

5 0
3 years ago
Melting Ice is what kind of reaction
Vesnalui [34]

Answer:

Answer is Endothermic Reaction

Explanation:

Basically, melting ice is an endothermic reaction because the ice absorbs (heat) energy, which causes a change to occur.

I hope it's helpful!!

7 0
3 years ago
Other questions:
  • Orange Juice mass = 18 G Volume = ??  Density 6 g/ ML <br><br>What is the Volume?
    6·2 answers
  • Write the equation of the line that has an undefined slope and passes through the point (4, 7). User: What is the slope of a lin
    5·2 answers
  • A planet has two moons with identical mass. Moon 1 is in a circular orbit of radius r. Moon 2 is in a circular orbit of radius 2
    11·1 answer
  • An 8 kg mass moving at 8 m/s collides with a 6 kg mass
    15·1 answer
  • A spaceship is moving past us at a speed close to the speed of light. If we could measure the mass of the spaceship as it goes b
    13·1 answer
  • Add a small ball to a graduated cylinder containing 10 milliliters of water.
    14·1 answer
  • 1. Describe the components of the reflex arc
    8·1 answer
  • Plzz answer this question correctly
    7·1 answer
  • PLS I NEED HELP ASAAP​
    14·1 answer
  • A 0.50-kg croquet ball is initially at rest on the grass. When the ball is struck by a mallet, the average force exerted on it i
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!