1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maksim [4K]
3 years ago
14

This 80 kg car is moving at 20m/sec at the top where the hills radius is 100m. What is the centrifugal force?

Physics
1 answer:
earnstyle [38]3 years ago
3 0
100 seconds is the right thing
You might be interested in
True or false. Students with a Learners License may not receive a motorcycle endorsement.
viktelen [127]
This is a true statement 
3 0
3 years ago
A 124-kg balloon carrying a 22-kg basket is descending with a constant downward velocity of 20.0 m/ s. A I.O-kg stone is thrown
nadya68 [22]

(a) 296.6 m

The motion of the stone is the motion of a projectile, thrown with a horizontal speed of

v_x = 15.0 m/s

and with an initial vertical velocity of

v_{y0} = -20.0 m/s

where we have put a negative sign to indicate that the direction is downward.

The vertical position of the stone at time t is given by

y(t) = h + v_{0y} t + \frac{1}{2}gt^2 (1)

where

h is the initial height

g = -9.81 m/s^2 is the acceleration due to gravity

The stone hits the ground after a time t = 6.00 s, so at this time the vertical position is zero:

y(6.00 s) = 0

Substituting into eq.(1), we can solve to find the initial height of the stone, h:

0 = h + v_{0y} y + \frac{1}{2}gt^2\\h = -v_{0y} y - \frac{1}{2}gt^2=-(-20.0 m/s)(6.00 s) - \frac{1}{2}(9.81 m/s^2)(6.00 s)^2=296.6 m

(b) 176.6 m

The balloon is moving downward with a constant vertical speed of

v_y = -20 m/s

So the vertical position of the balloon after a time t is

y(t) = h + v_y t

and substituting t = 6.0 s and h = 296.6 m, we find the height of the balloon when the rock hits the ground:

y(t) = 296.6 m + (-20.0 m)(6.00 s)=176.6 m

(c) 198.2 m

In order to find how far is the rock from the balloon when it hits the ground, we need to find the horizontal distance covered by the rock during the time of the fall.

The horizontal speed of the rock is

v_x = 15.0 m/s

So the horizontal distance travelled in t = 6.00 s is

d_x = v_x t = (15.0 m/s)(6.00 s)=90 m

Considering also that the vertical height of the balloon after t=6.00 s is

d_y = 176.6 m

The distance between the balloon and the rock can be found by using Pythagorean theorem:

d=\sqrt{(90 m)^2+(176.6 m)^2}=198.2 m

(di) 15.0 m/s, -58.8 m/s

For an observer at rest in the basket, the rock is moving horizontally with a velocity of

v_x = 15.0 m/s

Instead, the vertical velocity of the rock for an observer at rest in the basket is

v_y (t) = gt

Substituting time t=6.00 s, we find

v_y = (-9.8 m/s)(6.00 s)=-58.8 m/s

(dii) 15.0 m/s, -78.8 m/s

For an observer at rest on the ground, the rock is still moving horizontally with a velocity of

v_x = 15.0 m/s

Instead, the vertical velocity of the rock for an observer on the ground is now given by

v_y (t) = v_{0y} + gt

Substituting time t=6.00 s, we find

v_y = (-20.0 m/s)+(-9.8 m/s)(6.00 s)=-78.8 m/s

6 0
3 years ago
Which has more kinetic energy, a 4.0 kg bowling ball moving at 1.0 m/s or a 1.0 kg
jolli1 [7]

Answer:

The kinetic energy of bocce ball is more.

Explanation:

Given that,

Mass of a bowling ball, m₁ = 4 kg

Speed of the bowling ball, v₁ = 1 m/s

Mass of bocce ball, m₂ = 1 kg

Speed of bocce ball, v₂ = 4 m/s

We need to say which has more kinetic energy.

The kinetic energy of an object is given by :

E=\dfrac{1}{2}mv^2

Kinetic energy of the bowling ball,

E_1=\dfrac{1}{2}m_1v_1^2\\\\E_1=\dfrac{1}{2}\times 4\times (1)^2\\\\E_1=2\ J

The kinetic energy of the bocce ball,

E_2=\dfrac{1}{2}m_2v_2^2\\\\E_2=\dfrac{1}{2}\times 1\times (4)^2\\\\E_2=8\ J

So, the kinetic energy of bocce ball is more than that of bowling ball.

5 0
3 years ago
A construction crane, like the one shown, has a power output of 1,500 watts. If it takes 200 seconds to lift the roof to the top
Likurg_2 [28]

Answer:7.5j

Explanation:

P=w/s

4 0
3 years ago
A 0.111 kg hockey puck moving at 55 m/s is caught by a 80. kg goalie at rest. with what speed does the goalie slide on the frict
madreJ [45]

Answer:

0.076 m/s

Explanation:

Momentum is conserved:

m v = (m + M) V

(0.111 kg) (55 m/s) = (0.111 kg + 80. kg) V

V = 0.076 m/s

After catching the puck, the goalie slides at 0.076 m/s.

8 0
3 years ago
Other questions:
  • Match the following vocabulary terms to their definitions. 1. density a proposed explanation for a scientific problem 2. matter
    13·2 answers
  • During lightning strikes from a cloud to the ground, currents as ... currents as high as 2.50×10^4 amps can occur and last for a
    14·1 answer
  • HELP!! ME pls which Which of the following graphs correctly shows the relationship between KE and VELOCITY? *
    12·1 answer
  • How do the molecules of cold water differ from the molecules of hot water?
    14·2 answers
  • In Speed Study Number 1, we looked at two cars traveling the same distance at different speeds on city streets. Car "A" traveled
    10·1 answer
  • The wavelength of a water wave is 54 m. It has a frequency of 0.03 Hz. What is the velocity of the wave?
    6·1 answer
  • A force of 333 N is applied 33 cm from the pivot point. What is the maximum torque of this situation
    8·1 answer
  • A stone is thrown vertically upward with the velocity of 25 m/s. How long will it take to reach the maximum height?Also calculat
    11·1 answer
  • A small metal ball with a mass of m = 62.0 g is attached to a string of length l = 1.85 m. It is held at an angle of θ = 48.5° w
    8·1 answer
  • What are the three longest wavelengths for standing waves on a 264- cm -long string that is fixed at both ends
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!