It's along the number line
Answer:
The answer will be D. (2,4)
The area of a triangle is always:
A=bh/2 (base times the height divided by 2)
A=3x(2x)/2
A=6x^2/2
A=3x^2
...
Answer is D, 2(4a + 7.)
A is equivalent to 4a + 24.
B is equivalent to 16a + 40.
C is equivalent to 8a + 32.
⭐ Please consider brainliest! ⭐
✉️ If any further questions, inbox me! ✉️
Answer:
x= -3 and y= 0
Step-by-step explanation:
5x+2y=-15
<u>2x-2y=-6 </u>
<u>7x =-21</u>
x= -3
Putting value of x in equation 1
5(-3) +2y=-15
-15+2y= -15
2y= 0
y= 0
This can be solved with the help of matrices
In matrix form the above equations can be written in the form
= ![\left[\begin{array}{ccc}-15\\-6\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-15%5C%5C-6%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Let
= A
= X and
= B
Then AX= B
or X= A⁻¹ B
where A⁻¹= adj A/ ║A║ where mod A≠ 0
adj A= ![\left[\begin{array}{ccc}-2&-2\\-2&5\/\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%26-2%5C%5C-2%265%5C%2F%5Cend%7Barray%7D%5Cright%5D)
║A║= ( 5*-2- 2*2)= -10-4= -14≠0
X= A⁻¹ B
=- 1/14
![\left[\begin{array}{ccc}-15\\-6\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-15%5C%5C-6%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=- 1/14 ![\left[\begin{array}{ccc}-2*-15&+ -2*-6\\-2*-15&+ 5*-6\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%2A-15%26%2B%20-2%2A-6%5C%5C-2%2A-15%26%2B%205%2A-6%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=- 1/14 ![\left[\begin{array}{ccc} 30&+12\\30&+-30\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%2030%26%2B12%5C%5C30%26%2B-30%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=- 1/14 ![\left[\begin{array}{ccc}42\\0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D42%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
= ![\left[\begin{array}{ccc}-42/14\\0/-14\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-42%2F14%5C%5C0%2F-14%5C%5C%5Cend%7Barray%7D%5Cright%5D)
= ![\left[\begin{array}{ccc}-3\\0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
From here x= -3 and y= 0
Solution Set = [(-3,0)]