Answer: There are
ways of doing this
Hi!
To solve this problem we can think in term of binary numbers. Let's start with an example:
n=5, A = {1, 2 ,3}, B = {4,5}
We can think of A as 11100, number 1 meaning "this element is in A" and number 0 meaning "this element is not in A"
And we can think of B as 00011.
Thinking like this, the empty set is 00000, and [n] =11111 (this is the case A=empty set, B=[n])
This representation is a 5 digit binary number. There are
of these numbers. Each one of this is a possible selection of A and B. But there are repetitions: 11100 is the same selection as 00011. So we have to divide by two. The total number of ways of selecting A and B is the
.
This can be easily generalized to n bits.
Answer:
false
Step-by-step explanation:
Answer:
5
Step-by-step explanation:
Since the difference in each term number is 5, we put 5 in the place of the star.
Formula for constant difference in a pattern: Tn= an+b
a is the difference while b is the number that comes before the 1st term. So, the equation to find the nth term is Tn=5n+4.
Hope this helps and please give a brainlist, thank you!
Very simple.
Let's say you have an equation.
f(x) = x^2
You are asked to find the value for y when x equals 1.
The new equation is: f(1) = (1)^2
f(1) = 1
When x = 1, y = 1.
The same concept is applied here.
In the graph, where does x equal 0?
It equals zero at the origin.
Is there any y-value associated with 0?
Yes, there is.
Y equals five when x equals 0.
So
h(0) = 5