<span>The y-intercept of is .
Of course, it is 3 less than , the y-intercept of .
Subtracting 3 does not change either the regions where the graph is increasing and decreasing, or the end behavior. It just translates the graph 3 units down.
It does not matter is the function is odd or even.
is the mirror image of stretched along the y-direction.
The y-intercept, the value of for , is</span><span>which is times the y-intercept of .</span><span>Because of the negative factor/mirror-like graph, the intervals where increases are the intervals where decreases, and vice versa.
The end behavior is similarly reversed.
If then .
If then .
If then .
The same goes for the other end, as tends to .
All of the above applies equally to any function, polynomial or not, odd, even, or neither odd not even.
Of course, if polynomial functions are understood to have a non-zero degree, never happens for a polynomial function.</span><span> </span>
The volume is the product of the height and the area of the base.
V = Bh
The area of the square base is (4 cm)² = 16 cm², so the height can be found from
144 cm³ = (16 cm²)h
h = (144 cm³)/(16 cm² = 9 cm
The height of the prism is 9 cm.
<u>Answer:</u>
<u>Step-by-step explanation:</u>
<em>Rule: An absolute value will always be positive. </em>
<em>=> Referring to the rule, the absolute value of |–3.25| is 3.25.</em>
Hoped this helped.

Answer:
-$2.63
Step-by-step explanation:
Calculation for the expected profit for one spin of the roulette wheel with this bet
Based on the information given you bet $50 on 00 while the standard roulette has 38 possible outcomes which means that the probability or likelihood of getting 00 will be 1/38.
Therefore when we get an 00, we would get the amount of $1,750 with a probability of 1/38 and in a situation where were we get something other than 00 this means we would lose $50 with a probability of 37/38.
Now let find the Expected profit using this formula
Expected profit = sum(probability*value) -sum(probability*value)
Let plug in the formula
Expected profit =($1,750 * 1/38) - ($50 * 37/38)
Expected profit=($1,750*0.026315)-($50×0.973684)
Expected profit= 46.05 - 48.68
Expected profit = - $2.63
Therefore the expected profit for one spin of the roulette wheel with this bet will be -$2.63
$25 a month :) (its too short so i hope you have a lovely day)